2) \( -6 \sqrt[3]{5000}+\sqrt{20}+8 \sqrt[3]{40}-3 \sqrt{32} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expression \( -6 \sqrt[3]{5000}+\sqrt{20}+8 \sqrt[3]{40}-3 \sqrt{32} \), we first break down the square and cube roots: 1. Start with \( \sqrt{20} \): \( \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} \). 2. Now for \( \sqrt[3]{5000} \): \( \sqrt[3]{5000} = \sqrt[3]{5^4 \times 2} = 5\sqrt[3]{10} \). Thus, \( -6 \sqrt[3]{5000} = -30 \sqrt[3]{10} \). 3. Next, \( \sqrt[3]{40} = \sqrt[3]{8 \times 5} = 2\sqrt[3]{5} \). Therefore, \( 8 \sqrt[3]{40} = 16\sqrt[3]{5} \). 4. Now simplify \( \sqrt{32} \): \( \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2} \). Thus, \( -3 \sqrt{32} = -12 \sqrt{2} \). Now substituting these into the original expression: \[ -30\sqrt[3]{10} + 2\sqrt{5} + 16\sqrt[3]{5} - 12\sqrt{2} \] Reorganizing gives us: \[ -30\sqrt[3]{10} + 16\sqrt[3]{5} + 2\sqrt{5} - 12\sqrt{2} \] This is the simplified result: \[ -30\sqrt[3]{10} + 16\sqrt[3]{5} + 2\sqrt{5} - 12\sqrt{2} \]
