Two polynomials \( P \) and \( D \) are given. Use either synthetic or long division to divide \( P(x) \) by \( D(x) \), and express the quotient \( P(x) / D(x) \) in the form \( \frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)} \). \[ P(x)=x^{5}+x^{4}-5 x^{3}+4 x+4, D(x)=x^{2}+x-1 \] \( D(x) \)\( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Let's start with dividing the polynomial \( P(x) = x^5 + x^4 - 5x^3 + 4x + 4 \) by \( D(x) = x^2 + x - 1 \) using polynomial long division. 1. **Set Up the Long Division**: - Divide the leading term of \( P(x) \) by the leading term of \( D(x) \): - \(\frac{x^5}{x^2} = x^3\). - Multiply \( x^3 \) by \( D(x) \): - \( x^3(x^2 + x - 1) = x^5 + x^4 - x^3 \). 2. **Subtract**: - Now subtract this result from \( P(x) \): \[ (x^5 + x^4 - 5x^3 + 4x + 4) - (x^5 + x^4 - x^3) = -4x^3 + 4x + 4. \] 3. **Repeat the Process**: - Divide the leading term \( -4x^3 \) by \( x^2 \): - \(\frac{-4x^3}{x^2} = -4x\). - Multiply \( -4x \) by \( D(x) \): - \( -4x(x^2 + x - 1) = -4x^3 - 4x^2 + 4x \). 4. **Subtract Again**: - Subtract this result from the previous remainder: \[ (-4x^3 + 4x + 4) - (-4x^3 - 4x^2 + 4x) = 4x^2 + 4. \] 5. **Continue Dividing**: - Divide \( 4x^2 \) by \( x^2 \): - \(\frac{4x^2}{x^2} = 4\). - Multiply \( 4 \) by \( D(x) \): - \( 4(x^2 + x - 1) = 4x^2 + 4x - 4 \). 6. **Final Subtraction**: - Subtract this from the current remainder: \[ (4x^2 + 4) - (4x^2 + 4x - 4) = -4x + 8. \] Now we have our quotient \( Q(x) \) and the remainder \( R(x) \): - \( Q(x) = x^3 - 4x + 4 \) - \( R(x) = -4x + 8 \) Thus, we can express the division: \[ \frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} = (x^3 - 4x + 4) + \frac{-4x + 8}{x^2 + x - 1} \] Final answer: \[ \frac{P(x)}{D(x)} = x^3 - 4x + 4 + \frac{-4x + 8}{x^2 + x - 1}. \]
