Pregunta
upstudy study bank question image url

Two polynomials \( P \) and \( D \) are given. Use either synthetic or long division to divide \( P(x) \) by \( D(x) \), and express the quotient \( P(x) / D(x) \) in the form \( \frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)} \). \[ P(x)=x^{5}+x^{4}-5 x^{3}+4 x+4, D(x)=x^{2}+x-1 \] \( D(x) \)\( \square \)

Ask by Bradley Sherman. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quotient \( P(x) / D(x) \) is \( x^{3} - 4x + 4 + \frac{-4x + 8}{x^{2} + x - 1} \).

Solución

Given the polynomials \( P(x) = x^{5} + x^{4} - 5x^{3} + 4x + 4 \) and \( D(x) = x^{2} + x - 1 \), we need to perform polynomial division to find the quotient \( Q(x) \) and the remainder \( R(x) \) when \( P(x) \) is divided by \( D(x) \). To perform polynomial division, we can use synthetic division. The steps for synthetic division are as follows: 1. Write down the coefficients of the dividend polynomial \( P(x) \) in descending order of powers of \( x \). 2. Write down the divisor polynomial \( D(x) \) in the form of \( x - r \), where \( r \) is the root of the divisor polynomial. 3. Bring down the first coefficient of the dividend polynomial. 4. Multiply the root \( r \) by the coefficient brought down and write the result below the next coefficient. 5. Add the coefficients in the second column. 6. Repeat steps 4 and 5 until all coefficients have been processed. 7. The last coefficient in the third column is the remainder \( R(x) \). 8. The coefficients in the second column are the coefficients of the quotient polynomial \( Q(x) \). Let's perform synthetic division to find the quotient and remainder. Divide the polynomials by following steps: - step0: Using Long Division to Divide Polynomials: \(\frac{\left(x^{5}+x^{4}-5x^{3}+4x+4\right)}{\left(x^{2}+x-1\right)}\) - step1: Calculate: \(x^{3}-4x+4+\frac{-4x+8}{x^{2}+x-1}\) The quotient \( Q(x) \) is \( x^{3} - 4x + 4 \) and the remainder \( R(x) \) is \( -4x + 8 \). Therefore, the quotient \( P(x) / D(x) \) can be expressed as \( Q(x) + \frac{R(x)}{D(x)} = x^{3} - 4x + 4 + \frac{-4x + 8}{x^{2} + x - 1} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's start with dividing the polynomial \( P(x) = x^5 + x^4 - 5x^3 + 4x + 4 \) by \( D(x) = x^2 + x - 1 \) using polynomial long division. 1. **Set Up the Long Division**: - Divide the leading term of \( P(x) \) by the leading term of \( D(x) \): - \(\frac{x^5}{x^2} = x^3\). - Multiply \( x^3 \) by \( D(x) \): - \( x^3(x^2 + x - 1) = x^5 + x^4 - x^3 \). 2. **Subtract**: - Now subtract this result from \( P(x) \): \[ (x^5 + x^4 - 5x^3 + 4x + 4) - (x^5 + x^4 - x^3) = -4x^3 + 4x + 4. \] 3. **Repeat the Process**: - Divide the leading term \( -4x^3 \) by \( x^2 \): - \(\frac{-4x^3}{x^2} = -4x\). - Multiply \( -4x \) by \( D(x) \): - \( -4x(x^2 + x - 1) = -4x^3 - 4x^2 + 4x \). 4. **Subtract Again**: - Subtract this result from the previous remainder: \[ (-4x^3 + 4x + 4) - (-4x^3 - 4x^2 + 4x) = 4x^2 + 4. \] 5. **Continue Dividing**: - Divide \( 4x^2 \) by \( x^2 \): - \(\frac{4x^2}{x^2} = 4\). - Multiply \( 4 \) by \( D(x) \): - \( 4(x^2 + x - 1) = 4x^2 + 4x - 4 \). 6. **Final Subtraction**: - Subtract this from the current remainder: \[ (4x^2 + 4) - (4x^2 + 4x - 4) = -4x + 8. \] Now we have our quotient \( Q(x) \) and the remainder \( R(x) \): - \( Q(x) = x^3 - 4x + 4 \) - \( R(x) = -4x + 8 \) Thus, we can express the division: \[ \frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} = (x^3 - 4x + 4) + \frac{-4x + 8}{x^2 + x - 1} \] Final answer: \[ \frac{P(x)}{D(x)} = x^3 - 4x + 4 + \frac{-4x + 8}{x^2 + x - 1}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad