Find \( L C M \), rewrite and solve \( =3 \frac{3}{5}-\frac{1}{4} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the least common multiple (LCM) of the denominators 5 and 4, we see that 5 and 4 are relatively prime, so their LCM is 20. Now, let's rewrite the mixed number and the fraction with a common denominator: First, convert \( 3 \frac{3}{5} \) to an improper fraction: \[ 3 \frac{3}{5} = \frac{3 \times 5 + 3}{5} = \frac{15 + 3}{5} = \frac{18}{5} \] Now, convert \( \frac{1}{4} \) to have a denominator of 20: \[ \frac{1}{4} = \frac{1 \times 5}{4 \times 5} = \frac{5}{20} \] Now, convert \( \frac{18}{5} \): \[ \frac{18}{5} = \frac{18 \times 4}{5 \times 4} = \frac{72}{20} \] Now the expression looks like this: \[ = \frac{72}{20} - \frac{5}{20} \] Now we can subtract the fractions: \[ = \frac{72 - 5}{20} = \frac{67}{20} \] So, the final answer is: \[ = \frac{67}{20} \] If you would like it as a mixed number: \[ 3 \frac{7}{20} \]
