\( 1 \leftarrow \) Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find the value. \( f(x)=-3 x^{2}-6 x \) The quadratic function has a maximum value. The value is \( \square \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To determine whether the quadratic function \( f(x) = -3x^2 - 6x \) has a maximum or minimum value, we first observe the coefficient of \( x^2 \). Since it is negative (\( -3 \)), the parabola opens downwards, indicating that there is a maximum value. To find this maximum value, we can use the vertex formula \( x = -\frac{b}{2a} \), where \( a = -3 \) and \( b = -6 \). Plugging in these values, we get: \[ x = -\frac{-6}{2 \times -3} = -\frac{6}{-6} = 1. \] Next, we substitute \( x = 1 \) back into the function to find the maximum value: \[ f(1) = -3(1)^2 - 6(1) = -3 - 6 = -9. \] So, the quadratic function has a maximum value. The value is \( -9 \).
