Pregunta
upstudy study bank question image url

A bank features a savings account that has an annual percentage rate of \( 5.8 \% \) with interest compounded semiannually. Laila deposits \( \$ 10,000 \) into the account. How much money will Laila have in the account in 1 year? Answer = \( \$ \square \) What is the annual percentage yield (APY) for the savings account? APY \( =\square \). Round to the nearest hundredth of a percent.

Ask by Hanson Santiago. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 1 year, Laila will have \$10,588.41 in the account. The annual percentage yield (APY) is 5.88%.

Solución

Step 1. Calculate the amount in the account after 1 year. The nominal APR is 5.8% compounded semiannually, so the interest rate per period is   5.8% / 2 = 2.9% = 0.029. Since there are 2 periods in one year, the account balance A after 1 year is given by   A = Principal × (1 + 0.029)²     = 10,000 × (1.029)². Calculating (1.029)²:   (1.029)² ≈ 1.058841 Thus,   A ≈ 10,000 × 1.058841 = 10,588.41. Step 2. Compute the Annual Percentage Yield (APY). The effective annual yield is given by the formula   APY = (1 + r/n)ⁿ − 1,   where r = 0.058 and n = 2. Plugging in the numbers:   APY = (1 + 0.029)² − 1 = 1.058841 − 1 = 0.058841,   which is approximately 5.88% when expressed as a percentage. Final Answers:  Amount in 1 year = $10,588.41  APY = 5.88%

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate how much money Laila will have in her account after 1 year with semiannual compounding, you can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = the principal amount (the initial deposit). - \( r \) = the annual interest rate (decimal). - \( n \) = the number of times that interest is compounded per year. - \( t \) = the number of years the money is invested or borrowed. Substituting the known values: - \( P = 10,000 \) - \( r = 0.058 \) (5.8% as a decimal) - \( n = 2 \) (since it is compounded semiannually) - \( t = 1 \) The formula becomes: \[ A = 10,000 \left(1 + \frac{0.058}{2}\right)^{2 \cdot 1} \] \[ A = 10,000 \left(1 + 0.029\right)^{2} \] \[ A = 10,000 \left(1.029\right)^{2} \] \[ A = 10,000 \times 1.059841 \] \[ A \approx 10,598.41 \] So, Laila will have approximately \( \$ 10,598.41 \) in the account after 1 year. To find the annual percentage yield (APY), use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Substituting the values: \[ APY = \left(1 + \frac{0.058}{2}\right)^{2} - 1 \] \[ APY = \left(1.029\right)^{2} - 1 \] \[ APY \approx 1.059841 - 1 \] \[ APY \approx 0.059841 \] Converting this to a percentage: \[ APY \approx 5.98\% \] Thus, the annual percentage yield (APY) for the savings account is approximately \( 5.98\% \). So, the final answers are: Answer = \( \$ 10,598.41 \) APY \( = 5.98 \% \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad