Responder
\( b \approx 7.7 \)
Solución
To solve the triangle with the given conditions \( a = 9 \), \( c = 4 \), and \( B = 58^\circ \), we can use the Law of Sines. The Law of Sines states that:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]
### Step 1: Find angle \( A \)
First, we need to find angle \( A \) using the Law of Sines. We can rearrange the formula to find \( A \):
\[
\frac{a}{\sin A} = \frac{c}{\sin C}
\]
However, we need to find angle \( C \) first. We can use the Law of Sines to find \( C \) as follows:
\[
\frac{a}{\sin A} = \frac{c}{\sin C}
\]
Rearranging gives us:
\[
\sin C = \frac{c \cdot \sin B}{a}
\]
Substituting the known values:
\[
\sin C = \frac{4 \cdot \sin(58^\circ)}{9}
\]
### Step 2: Calculate \( \sin C \)
Let's calculate \( \sin(58^\circ) \) and then find \( \sin C \):
\[
\sin(58^\circ) \approx 0.8480
\]
Now substituting this value:
\[
\sin C = \frac{4 \cdot 0.8480}{9}
\]
Calculating this gives:
\[
\sin C \approx \frac{3.392}{9} \approx 0.3769
\]
### Step 3: Find angle \( C \)
Now we can find angle \( C \):
\[
C = \arcsin(0.3769)
\]
### Step 4: Calculate angle \( C \)
Let's calculate \( C \):
\[
C \approx 22.1^\circ
\]
### Step 5: Find angle \( A \)
Now we can find angle \( A \) using the fact that the sum of angles in a triangle is \( 180^\circ \):
\[
A = 180^\circ - B - C
\]
Substituting the known values:
\[
A = 180^\circ - 58^\circ - 22.1^\circ
\]
Calculating this gives:
\[
A \approx 99.9^\circ
\]
### Step 6: Find side \( b \)
Now we can find side \( b \) using the Law of Sines:
\[
\frac{b}{\sin B} = \frac{a}{\sin A}
\]
Rearranging gives:
\[
b = \frac{a \cdot \sin B}{\sin A}
\]
Substituting the known values:
\[
b = \frac{9 \cdot \sin(58^\circ)}{\sin(99.9^\circ)}
\]
Since \( \sin(99.9^\circ) \approx \sin(80^\circ) \approx 0.9848 \):
Calculating \( b \):
\[
b = \frac{9 \cdot 0.8480}{0.9848}
\]
Calculating this gives:
\[
b \approx \frac{7.632}{0.9848} \approx 7.7
\]
### Final Answer
Thus, the length of side \( b \) is approximately:
\[
\boxed{7.7}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución