Use the Half-angle Formulas to find the exact value of \( \tan \left(-\frac{5 \pi}{8}\right) \) \( \tan \left(-\frac{5 \pi}{8}\right)=\square \) (Simplify your answer. Type an exact answer, using radicals as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find \( \tan \left(-\frac{5 \pi}{8}\right) \) using the Half-angle Formulas, we can rewrite \( -\frac{5\pi}{8} \) as \( -\frac{1}{2} \cdot \frac{5\pi}{4} \). We know that: \[ \tan \left(-\frac{\theta}{2}\right) = -\tan \left(\frac{\theta}{2}\right) \] If we let \( \theta = \frac{5\pi}{4} \), then we first find \( \tan \left(\frac{5\pi}{8}\right) \). The angle \( \frac{5\pi}{8} \) is half of \( \frac{5\pi}{4} \), which we can express using the angle addition formula. Now, the Half-angle Formula for tangent is: \[ \tan \left(\frac{\theta}{2}\right) = \frac{1 - \cos \theta}{\sin \theta} \] For \( \theta = \frac{5\pi}{4} \): - \( \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \) - \( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \) Substituting these values gives: \[ \tan\left(\frac{5\pi}{8}\right) = \frac{1 - \left(-\frac{\sqrt{2}}{2}\right)}{-\frac{\sqrt{2}}{2}} = \frac{1 + \frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = \frac{2 + \sqrt{2}}{-\sqrt{2}} \] This simplifies as follows: \[ = -\frac{2 + \sqrt{2}}{\sqrt{2}} = -\frac{2}{\sqrt{2}} - 1 = -\sqrt{2} - 1 \] So, we have: \[ \tan \left(-\frac{5\pi}{8}\right) = -\tan \left(\frac{5\pi}{8}\right) = \sqrt{2} + 1 \] Therefore, the exact value of \( \tan \left(-\frac{5 \pi}{8}\right) \) is: \[ \boxed{\sqrt{2} + 1} \]
