Pregunta
upstudy study bank question image url

AMPLE 3 en: \( f(x)=2 x^{2} \) Determine the equation of the inverse of \( f \) in the form \( f^{-1}(x)=\ldots \) On the same set of \( x \)-axis, sketch the graphs of \( f \) and \( f^{-1} \). Indicate clearly the intercepts with the axis, as well as another point on the graph of each f and \( f^{-1} \). Determine the domain and range of both \( f \) and \( f^{-1} \). Is \( f^{-1} \) a function? Give a reason for your answer. How can \( f \) be restricted so that the inverse is a function? On the separate set of axis, sketch both restricted function and their inverses.

Ask by Mitchell Fleming. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the inverse of \( f(x) = 2x^2 \), restrict the domain to \( x \geq 0 \), resulting in \( f^{-1}(x) = \sqrt{\frac{x}{2}} \). Both functions have the same domain and range of \( [0, \infty) \). The inverse is a function because it passes the vertical line test. To make the inverse a function, restrict \( f \) to \( x \geq 0 \).

Solución

It seems that I am unable to generate plots directly. However, I can guide you on how to sketch the graphs of \( f(x) = 2x^2 \) and its inverse \( f^{-1}(x) = \sqrt{\frac{x}{2}} \). ### Instructions for Sketching the Graphs 1. **Graph of \( f(x) = 2x^2 \)**: - Start at the origin (0, 0). - For \( x = 1 \), \( f(1) = 2 \) (point (1, 2)). - For \( x = 2 \), \( f(2) = 8 \) (point (2, 8)). - The graph is a parabola opening upwards, starting from the origin and increasing steeply as \( x \) increases. 2. **Graph of \( f^{-1}(x) = \sqrt{\frac{x}{2}} \)**: - Start at the origin (0, 0). - For \( x = 2 \), \( f^{-1}(2) = 1 \) (point (2, 1)). - For \( x = 8 \), \( f^{-1}(8) = 2 \) (point (8, 2)). - The graph is a curve that increases, starting from the origin and gradually increasing, but at a slower rate than the parabola. ### Key Points to Indicate on the Graphs - **For \( f(x) \)**: - Intercept: (0, 0) - Point: (1, 2) - **For \( f^{-1}(x) \)**: - Intercept: (0, 0) - Point: (2, 1) ### Domain and Range - **Both functions** have the same domain and range: - Domain: \( [0, \infty) \) - Range: \( [0, \infty) \) ### Conclusion - The graphs of \( f \) and \( f^{-1} \) will reflect across the line \( y = x \), which is a characteristic of inverse functions. If you have graphing software or graph paper, you can plot these points and draw the curves accordingly. If you need further assistance or have any questions, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the inverse of the function \( f(x) = 2x^2 \), start by replacing \( f(x) \) with \( y \): \[ y = 2x^2. \] Then, swap \( x \) and \( y \) to solve for \( y \): \[ x = 2y^2. \] Now, isolate \( y \): \[ y^2 = \frac{x}{2} \quad \Rightarrow \quad y = \sqrt{\frac{x}{2}} \text{ (for } y \geq 0\text{)}. \] Thus the inverse can be written as: \[ f^{-1}(x) = \sqrt{\frac{x}{2}}. \] To sketch the graphs, note that the function \( f(x) = 2x^2 \) is a parabola opening upwards, with its vertex at (0,0) and intercepting the y-axis at (0,0). The key point can be chosen as (1, 2). The inverse \( f^{-1}(x) = \sqrt{\frac{x}{2}} \) is defined for \( x \geq 0 \), reaching the point (2, 1) on the graph. The graphs intersect at (0,0). The domain and range of \( f \) are: - Domain of \( f: (-\infty, \infty) \) - Range of \( f: [0, \infty) \) For \( f^{-1} \): - Domain: [0, ∞) - Range: \( (-\infty, \infty) \) Since \( f^{-1}(x) = \sqrt{\frac{x}{2}} \) only returns non-negative outputs, \( f^{-1} \) is a function. To restrict \( f \) to ensure that its inverse is also a function, limit the domain to \( x \geq 0 \). Sketch the restricted function \( f(x) = 2x^2 \) for \( x \geq 0 \) with the vertex at (0,0) and then its inverse \( f^{-1}(x) = \sqrt{\frac{x}{2}} \) on a separate set of axes, showing the specified points clearly.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad