Pregunta
upstudy study bank question image url

4. Given: \( p \sin \beta=3 \) and 4.1 In which quadrat 4.2 Show that \( \tan \beta \) 4.3 Determine the \( n t \) 5. Given: \( \cos ^{2} \theta\left(\frac{1}{\sin \theta-1}\right. \) 5.1 For what values 5.2 Prove that \( \cos ^{2} \)

Ask by Greene Gibbs. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The problem statement appears to be incomplete. Please provide the full questions for parts 4.1, 4.2, 4.3, 5.1, and 5.2 so I can assist you effectively.

Solución

It looks like the problem statement may be incomplete or missing some details. Could you please clarify or provide the full text of the questions? For example: • In part 4, after “Given: p sin β = 3,” what exactly are you asking in 4.1 (which quadrant? Do you mean the quadrant where β lies or something about p?) What is the full statement for 4.2 (show that tan β … what is the complete expression?) and 4.3 (determine the “n t”—could that be “nt”, “net”, “nth” term, or something else?) • Similarly, in part 5, the expression for cos²θ(1/(sin θ–1) seems to be incomplete. What exactly is asked in 5.1 (for what values of what?) and in 5.2 (prove that cos² … what is the complete statement)? With the full details I’d be happy to help you work through the problem step by step.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle the first part, we know from \( p \sin \beta = 3 \) that \( \sin \beta \) can take values between -1 and 1. So, we can infer that since \( p \sin \beta \) equals a positive value, \( \beta \) must be in either the first or second quadrant, where sine is positive. Now for the proof of \( \tan \beta \), knowing \( \sin \beta = \frac{3}{p} \) leads to \( \tan \beta = \frac{\sin \beta}{\cos \beta} \). Using Pythagorean identity \( \cos ^2 \beta = 1 - \sin ^2 \beta \), we can derive \( \tan \beta \) in terms of \( p \), culminating in the expression \( \tan \beta = \frac{3}{\sqrt{p^2 - 9}} \), given \( p^2 > 9 \) to maintain the validity of the square root. Shifting gears to the second equation, \( \cos^{2} \theta\left(\frac{1}{\sin \theta-1}\right) \), we need to examine possible values for \( \sin \theta \). Notably, \( \sin \theta \) must be greater than 1 for the function to be defined, which is impossible since \( \sin \theta \) is always between -1 and 1. Thus, there are no valid values of \( \theta \) that satisfy this condition. In proving \( \cos^{2} \), we see that for any \( \theta \) where defined, the maximum value \( \cos^{2} \theta \) can take is 1 (when \( \theta = 0, \pi, \ldots \)). Hence, \( \cos^{2} \theta \) is bounded by 0 and 1, aligning with its definition in the unit circle.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad