Pregunta
Solve the system by the addition method. \[ \begin{array}{l}x+y=7 \\ x-y=1\end{array} \] Select the correct choice below and fill in any answer boxes present in your choice. The solution set is \{\}. (Simplify your answer. Type an ordered pair.) B. There are infinitely many solutions.
Ask by Schultz Hanson. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution set is \((4, 3)\).
Solución
Solve the system of equations \( x+y=7;x-y=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=7\\x-y=1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=7-y\\x-y=1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(7-y-y=1\)
- step3: Subtract the terms:
\(7-2y=1\)
- step4: Move the constant to the right side:
\(-2y=1-7\)
- step5: Subtract the numbers:
\(-2y=-6\)
- step6: Change the signs:
\(2y=6\)
- step7: Divide both sides:
\(\frac{2y}{2}=\frac{6}{2}\)
- step8: Divide the numbers:
\(y=3\)
- step9: Substitute the value of \(y:\)
\(x=7-3\)
- step10: Calculate:
\(x=4\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=3\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(4,3\right)\)
The solution to the system of equations \(x+y=7\) and \(x-y=1\) is \(x=4\) and \(y=3\). Therefore, the solution set is \((4,3)\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
First, let's solve the system of equations using the addition method: 1. Start with the equations: \[ x + y = 7 \quad (1) \] \[ x - y = 1 \quad (2) \] 2. To eliminate \( y \), we can add both equations together: \[ (x + y) + (x - y) = 7 + 1 \] This simplifies to: \[ 2x = 8 \] Dividing by 2 gives: \[ x = 4 \] 3. Now, substitute \( x = 4 \) back into equation (1) to solve for \( y \): \[ 4 + y = 7 \] This gives: \[ y = 3 \] Thus, the solution set is \{(4, 3)\}.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium