Pregunta
upstudy study bank question image url

A spherical balloon is inflating with helium at a rate of \( 72 \pi \mathrm{ft}^{3} / \mathrm{min} \). How fast is the balloon's radus increasing at the instant the radius is 3 ft ? How fast is the surface area increasing? The balloon's radus is increasing at a rate of \( \square \mathrm{ft} / \mathrm{min} \) at the instant the radus is 3 ft . (Simplify your answer.)

Ask by Owen Daniel. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At the instant the radius is 3 ft, the balloon's radius is increasing at a rate of 2 ft/min, and the surface area is increasing at a rate of 48π ft²/min.

Solución

We start with the formulas for the volume and surface area of a sphere:   Volume: V = (4/3)πr³   Surface Area: S = 4πr² Given that helium is added at the rate dV/dt = 72π ft³/min, we first differentiate the volume with respect to time:   dV/dt = 4πr² (dr/dt) At the instant r = 3 ft:   72π = 4π(3²)(dr/dt)   72π = 4π(9)(dr/dt)   72π = 36π (dr/dt) Solve for dr/dt:   dr/dt = (72π) / (36π) = 2 ft/min So, at the moment when the radius is 3 ft, the rate of increase of the radius is 2 ft/min. Next, differentiate the surface area with respect to time:   dS/dt = 8πr (dr/dt) At r = 3 ft and using dr/dt = 2 ft/min:   dS/dt = 8π(3)(2)   dS/dt = 48π ft²/min Thus, the surface area is increasing at a rate of 48π ft²/min when the radius is 3 ft. Summary:   • The balloon's radius is increasing at 2 ft/min.   • The surface area is increasing at 48π ft²/min.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how fast the balloon's radius is increasing, we start with the volume formula for a sphere: \[ V = \frac{4}{3} \pi r^3. \] Given that the volume is changing at a rate of \( \frac{dV}{dt} = 72 \pi \mathrm{ft}^{3}/\mathrm{min} \), we can apply the chain rule: \[ \frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt}. \] Now, plug in \( r = 3 \) ft: \[ 72 \pi = 4 \pi (3^2) \frac{dr}{dt}. \] This simplifies to: \[ 72 \pi = 36 \pi \frac{dr}{dt}, \] which leads us to find: \[ \frac{dr}{dt} = \frac{72 \pi}{36 \pi} = 2 \, \mathrm{ft/min}. \] So, the radius is increasing at a rate of 2 ft/min when the radius is 3 ft. Next, to find how fast the surface area is increasing, we use the surface area formula: \[ S = 4 \pi r^2. \] Taking the derivative with respect to time gives: \[ \frac{dS}{dt} = 8 \pi r \frac{dr}{dt}. \] Substituting \( r = 3 \) ft and \( \frac{dr}{dt} = 2 \, \mathrm{ft/min} \): \[ \frac{dS}{dt} = 8 \pi (3) (2) = 48 \pi \, \mathrm{ft}^2/\mathrm{min}. \] In conclusion, the balloon's radius is increasing at a rate of \( 2 \, \mathrm{ft/min} \) and the surface area is increasing at \( 48 \pi \, \mathrm{ft}^2/\mathrm{min} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad