Pregunta
upstudy study bank question image url

Ravi borrowed money from a bank to buy a motorcycle. He took out a personal, amortized loan for \( \$ 18,000 \), at an interest rate of \( 5.6 \% \), with monthly payments for a term of 5 years. For each part, do not round any intermediate computations and round your final answers to the nearest cent. If necessary, refer to the list of financial formulas. (a) Find Ravi's monthly payment. (b) If Ravi pays the monthly payment each month for the full term, find his total amount to repay the loan. s (c) If Ravi pays the monthly payment each month for the full term, find the total amount of interest he will pay. s

Ask by Christensen Crawford. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Ravi's monthly payment is $1047.85. Over 5 years, he will repay a total of $62,866.50, of which $44,866.50 is interest.

Solución

To find Ravi's monthly payment, we can use the formula for monthly payments on a loan: \[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) is the monthly payment - \( P \) is the principal amount (initial loan amount) - \( r \) is the monthly interest rate - \( n \) is the number of payments (months) Given: - \( P = \$18,000 \) - \( r = 5.6\% = 0.056 \) - \( n = 5 \times 12 = 60 \) months Let's calculate Ravi's monthly payment using the formula. Calculate the value by following steps: - step0: Calculate: \(\frac{18000\times 0.056\left(1+0.056\right)^{60}}{\left(\left(1+0.056\right)^{60}-1\right)}\) - step1: Remove the parentheses: \(\frac{18000\times 0.056\left(1+0.056\right)^{60}}{\left(1+0.056\right)^{60}-1}\) - step2: Add the numbers: \(\frac{18000\times 0.056\times 1.056^{60}}{\left(1+0.056\right)^{60}-1}\) - step3: Add the numbers: \(\frac{18000\times 0.056\times 1.056^{60}}{1.056^{60}-1}\) - step4: Convert the expressions: \(\frac{18000\times 0.056\left(\frac{132}{125}\right)^{60}}{1.056^{60}-1}\) - step5: Convert the expressions: \(\frac{18000\times 0.056\left(\frac{132}{125}\right)^{60}}{\left(\frac{132}{125}\right)^{60}-1}\) - step6: Multiply: \(\frac{1008\times \frac{132^{60}}{125^{60}}}{\left(\frac{132}{125}\right)^{60}-1}\) - step7: Subtract the numbers: \(\frac{1008\times \frac{132^{60}}{125^{60}}}{\frac{132^{60}-125^{60}}{125^{60}}}\) - step8: Multiply: \(\frac{\frac{1008\times 132^{60}}{125^{60}}}{\frac{132^{60}-125^{60}}{125^{60}}}\) - step9: Multiply by the reciprocal: \(\frac{1008\times 132^{60}}{125^{60}}\times \frac{125^{60}}{132^{60}-125^{60}}\) - step10: Reduce the numbers: \(1008\times 132^{60}\times \frac{1}{132^{60}-125^{60}}\) - step11: Multiply: \(\frac{1008\times 132^{60}}{132^{60}-125^{60}}\) The monthly payment for Ravi's loan is approximately $1047.85. Now, let's find the total amount Ravi will repay if he pays the monthly payment each month for the full term. The total amount to repay is the sum of the monthly payments over the term of the loan. We can calculate this by multiplying the monthly payment by the number of payments. Total amount to repay = Monthly payment * Number of payments Total amount to repay = $1047.85 * 60 Total amount to repay = $62,866.50 Therefore, if Ravi pays the monthly payment each month for the full term, he will repay a total of $62,866.50. Next, let's find the total amount of interest Ravi will pay if he pays the monthly payment each month for the full term. The total interest paid is the difference between the total amount to repay and the principal amount. Total interest = Total amount to repay - Principal amount Total interest = $62,866.50 - $18,000 Total interest = $44,866.50 Therefore, if Ravi pays the monthly payment each month for the full term, he will pay a total of $44,866.50 in interest.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To figure out Ravi's finances in this motorcycle adventure, let’s break it down step by step: ### (a) Find Ravi's monthly payment. The formula to calculate the monthly payment for an amortized loan is: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) is the monthly payment, - \( P \) is the loan amount (\$18,000), - \( r \) is the monthly interest rate (annual rate / 12 = 5.6% / 12 = 0.0046667), - \( n \) is the number of payments (loan term in months = 5 years × 12 months/year = 60 months). Plugging the numbers into the formula: \[ M = 18000 \frac{0.0046667(1 + 0.0046667)^{60}}{(1 + 0.0046667)^{60} - 1} \] Calculating this gives \( M \approx 344.38 \). ### (b) Find his total amount to repay the loan. To find the total amount Ravi will repay over the life of the loan, multiply the monthly payment by the number of payments. \[ \text{Total Repayment} = M \times n = 344.38 \times 60 = 20,662.80. \] ### (c) Find the total amount of interest he will pay. The total interest paid can be calculated by subtracting the principal from the total repayment. \[ \text{Total Interest} = \text{Total Repayment} - P = 20,662.80 - 18,000 = 2,662.80. \] So, Ravi's financial journey comes down to: - Monthly Payment: \( \$344.38 \) - Total Amount Paid: \( \$20,662.80 \) - Total Interest: \( \$2,662.80 \) Happy riding, Ravi! 🚴‍♂️

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad