Solve the system of equations by any method. \[ 5 x+9 y=16 \] \[ x+2 y=4 \] Enter the exact answer as an ordered pair, \( (x, y) \) If there is no solution, enter NS. If there is an infinite number of solutions, an ordered pair in terms of \( x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the system of equations, we can use the substitution or elimination method. Here, we'll use the elimination method. Given the equations: 1. \( 5x + 9y = 16 \) 2. \( x + 2y = 4 \) First, we'll solve the second equation for \( x \): \[ x = 4 - 2y \] Now, we'll substitute \( x \) in the first equation: \[ 5(4 - 2y) + 9y = 16 \] Distributing \( 5 \): \[ 20 - 10y + 9y = 16 \] \[ 20 - y = 16 \] Now, isolate \( y \): \[ -y = 16 - 20 \] \[ -y = -4 \] \[ y = 4 \] Now, substitute \( y = 4 \) back into the expression for \( x \): \[ x = 4 - 2(4) = 4 - 8 = -4 \] Thus, the solution to the system of equations is: \[ \boxed{(-4, 4)} \]
