Pregunta
upstudy study bank question image url

A factory manufactures fax machines and scanners. On any given day \( x \) fax machines and \( y \) scanners are produced. Constraints such as labour, time, cost of materials and demand influence the production and profit. These constraints are represented by the following inequalities: \( 3 x+2 y \leq 24 ; x+2 y \leq 12 ; x+y \geq 6 ; x+2 y \geq 8 ; x>0 ; y> \) 0 \( \begin{array}{l}\text { 2.3.1 } \begin{array}{l}\text { Using a scale of } 10 \mathrm{~mm}=1 \text { unit make a graphical } \\ \text { representation of the above constrains, and clearly } \\ \text { indicate the feasible region. } \\ \text { 2.3.2 If the profit } \mathrm{P} \text {, in rands is given by the objective function } \\ y=-\frac{4}{5} x+\frac{p}{200} \text {, determine the profit on each fax } \\ \text { machine and on each scanner. } \\ \text { 2.3.3 } \begin{array}{l}\text { Use a search line to determine how may fax machines } \\ \text { and scanners should be produced per day so as to } \\ \text { yield a maximum profit? }\end{array} \\ \begin{array}{ll}\text { 2.3.4 Calculate the maximum profit. }\end{array}\end{array} \text { (3) } \\ \text { Col }\end{array} \)

Ask by Turner Gardner. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine the number of fax machines and scanners to produce for maximum profit, follow these steps: 1. **Graphical Representation**: - Plot the inequalities \( 3x + 2y \leq 24 \), \( x + 2y \leq 12 \), \( x + y \geq 6 \), and \( x + 2y \geq 8 \) on a graph with \( x \) representing fax machines and \( y \) representing scanners. - Identify the feasible region where all constraints are satisfied. 2. **Profit Calculation**: - The profit function is \( P = -\frac{4}{5}x + \frac{p}{200} \), where \( x \) is the number of fax machines and \( y \) is the number of scanners. - The coefficients \(-\frac{4}{5}\) and \(\frac{p}{200}\) represent the profit per fax machine and scanner, respectively. 3. **Search Line Method**: - Draw lines of constant profit using the profit function. - Move the profit line outward until it no longer intersects the feasible region. - The point where the profit line last touches the feasible region is the optimal production point. 4. **Maximum Profit Calculation**: - Substitute the optimal values of \( x \) and \( y \) into the profit function to find the maximum profit. By following these steps, determine the optimal number of fax machines and scanners to produce to achieve the highest profit within the given constraints.

Solución

To solve the problem step by step, we will address each part of the question systematically. ### 2.3.1 Graphical Representation of Constraints We have the following inequalities representing the constraints: 1. \( 3x + 2y \leq 24 \) 2. \( x + 2y \leq 12 \) 3. \( x + y \geq 6 \) 4. \( x + 2y \geq 8 \) 5. \( x > 0 \) 6. \( y > 0 \) To graph these inequalities, we will first convert them into equations to find the boundary lines. 1. **For \( 3x + 2y = 24 \)**: - When \( x = 0 \): \( 2y = 24 \) → \( y = 12 \) (Point: (0, 12)) - When \( y = 0 \): \( 3x = 24 \) → \( x = 8 \) (Point: (8, 0)) 2. **For \( x + 2y = 12 \)**: - When \( x = 0 \): \( 2y = 12 \) → \( y = 6 \) (Point: (0, 6)) - When \( y = 0 \): \( x = 12 \) (Point: (12, 0)) 3. **For \( x + y = 6 \)**: - When \( x = 0 \): \( y = 6 \) (Point: (0, 6)) - When \( y = 0 \): \( x = 6 \) (Point: (6, 0)) 4. **For \( x + 2y = 8 \)**: - When \( x = 0 \): \( 2y = 8 \) → \( y = 4 \) (Point: (0, 4)) - When \( y = 0 \): \( x = 8 \) (Point: (8, 0)) Next, we will plot these lines on a graph and shade the feasible region based on the inequalities. ### 2.3.2 Profit Calculation The profit \( P \) is given by the objective function: \[ P = -\frac{4}{5}x + \frac{p}{200} \] To determine the profit on each fax machine and scanner, we need to identify the coefficients of \( x \) and \( y \) in the profit function. The coefficient of \( x \) represents the profit per fax machine, and the coefficient of \( y \) represents the profit per scanner. ### 2.3.3 Search Line Method To find the optimal production levels of fax machines and scanners that yield maximum profit, we will use the search line method. This involves drawing lines of constant profit and moving them outward until they no longer intersect the feasible region. ### 2.3.4 Maximum Profit Calculation Once we identify the optimal point from the search line method, we will substitute the values of \( x \) and \( y \) into the profit function to calculate the maximum profit. Now, let's proceed with the calculations for the graphical representation and profit determination. ### Graphical Representation To graph the inequalities, we will find the intersection points of the lines and determine the feasible region. Let's calculate the intersection points of the lines defined by the equations: 1. \( 3x + 2y = 24 \) 2. \( x + 2y = 12 \) 3. \( x + y = 6 \) 4. \( x + 2y = 8 \) We will solve these equations to find the intersection points. ### Finding Intersection Points 1. **Intersection of \( 3x + 2y = 24 \) and \( x + 2y = 12 \)**: - From \( x + 2y = 12 \), we can express \( y \) in terms of \( x \): \[ y = \frac{12 - x}{2} \] - Substitute into \( 3x + 2y = 24 \): \[ 3x + 2\left(\frac{12 - x}{2}\right) = 24 \] \[ 3x + 12 - x = 24 \] \[ 2x = 12 \implies x = 6 \] - Substitute \( x = 6 \) back to find \( y \): \[ y = \frac{12 - 6}{2} = 3 \] - Intersection point: \( (6, 3) \) 2. **Intersection of \( x + 2y = 12 \) and \( x + y = 6 \)**: - From \( x + y = 6 \), express \( y \): \[ y = 6 - x \] - Substitute into \( x + 2y = 12 \): \[ x + 2(6 - x) = 12 \] \[ x + 12 - 2x = 12 \] \[ -x = 0 \implies x = 0 \] - Substitute \( x = 0 \) back to find \( y \): \[ y = 6 - 0 = 6 \] - Intersection point: \( (0, 6) \) 3. **Intersection of \( x + 2y = 8 \) and \( x + y = 6 \)**: - From \( x + y = 6 \), express \( y \): \[ y = 6 - x \] - Substitute into \( x + 2y = 8 \): \[ x + 2(6 - x) = 8 \] \[ x + 12 - 2x = 8 \] \[ -x = -4 \implies x = 4 \] - Substitute \( x = 4 \) back to find \( y \): \[ y = 6 - 4 = 2 \] - Intersection point: \( (4, 2) \) 4. **Intersection of \( 3x + 2y = 24 \) and \( x + 2y = 8 \)**: - From \( x + 2y = 8 \), express \( y \): \[ y = \frac{8 - x}{2} \] - Substitute into \( 3x + 2y = 24 \): \[ 3x + 2\left(\frac{8 - x}{2}\right) = 24 \] \[

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To create a graphical representation of the constraints, it’s a good idea to plot each inequality on a coordinate plane (with \(x\) as fax machines and \(y\) as scanners). First, rearrange the inequalities into slope-intercept form, graph the lines, and then shade the appropriate regions that satisfy each inequality. The feasible region is where all the shaded areas overlap—making it the perfect area to produce those machines and earn some serious cash! Now, onto the profit function! The given equation \(y = -\frac{4}{5}x + \frac{p}{200}\) suggests that the profit comes from selling \(P\) rands (or dollars!). To find how much each fax machine and scanner contributes to profit, you can determine \(p\) from the maximum profit you find in the constraints. Ultimately, finding the optimal number of fax machines and scanners will help maximize profit, which is the goal here—cha-ching!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad