Pregunta

Find the volume of the solid obtained by rotating the region enclosed by \( y = 3x - x^2 \) and the x-axis for \( 0 \leq x \leq 3 \) around the x-axis using washers.

Ask by Ortiz Gonzalez. in Nigeria
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{81\pi}{10} \) cubic units.

Solución

The region is bounded by the curve y = 3x – x² and the x-axis from x = 0 to x = 3. When this region is rotated about the x-axis, each vertical slice forms a washer (disk) with an outer radius R(x) equal to the value of y and an inner radius of 0. Step 1. Write the formula for the volume:   Volume V = π ∫ from x = 0 to x = 3 [R(x)]² dx. Since R(x) = 3x – x², we have:   V = π ∫ from 0 to 3 (3x – x²)² dx. Step 2. Expand the integrand:   (3x – x²)² = 9x² – 6x³ + x⁴. Step 3. Set up and evaluate the integral:   V = π ∫ from 0 to 3 (9x² – 6x³ + x⁴) dx.   Integrate term by term:   • ∫ 9x² dx = 9 (x³/3) = 3x³,   • ∫ (–6x³) dx = –6 (x⁴/4) = –(3/2)x⁴,   • ∫ x⁴ dx = x⁵/5. Thus, the integral becomes:   3x³ – (3/2)x⁴ + x⁵/5 evaluated from 0 to 3. Step 4. Evaluate at x = 3:   3(3)³ = 3(27) = 81,   (3/2)(3)⁴ = (3/2)(81) = 121.5 (which is 243/2),   (3)⁵/5 = 243/5. So, we have:   81 – 243/2 + 243/5. Find a common denominator (which is 10):   81 = 810/10,   243/2 = 1215/10,   243/5 = 486/10. Thus, the expression becomes:   (810 – 1215 + 486) / 10 = (81) / 10. Step 5. Multiply by π to get the final volume:   V = (81π)/10. So, the volume of the solid obtained by rotating the region about the x-axis is (81π)/10 cubic units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the solid obtained by rotating the region enclosed by the curve \(y = 3x - x^2\) and the x-axis from \(x = 0\) to \(x = 3\) around the x-axis using the washer method, we need to first determine the outer and inner radii for the washers. The area we are interested in is bounded by the function \(y = 3x - x^2\) (which is the upper curve) and \(y = 0\) (the x-axis). The volume \(V\) of the solid of revolution can be calculated using the formula: \[ V = \pi \int_{a}^{b} (R(x)^2 - r(x)^2) \, dx \] Here, \(R(x)\) is the outer radius and \(r(x)\) is the inner radius. For our case, since the region is above the x-axis and there is no hole (the inner radius is zero), we have \(R(x) = 3x - x^2\) and \(r(x) = 0\). Thus, the volume formula simplifies to: \[ V = \pi \int_{0}^{3} (3x - x^2)^2 \, dx \] First, we simplify the integrand: \((3x - x^2)^2 = 9x^2 - 6x^3 + x^4\) Now we can set up the integral: \[ V = \pi \int_{0}^{3} (9x^2 - 6x^3 + x^4) \, dx \] Next, we compute the integral: \[ \int (9x^2 - 6x^3 + x^4) \, dx = 3x^3 - \frac{6}{4}x^4 + \frac{1}{5}x^5 = 3x^3 - \frac{3}{2}x^4 + \frac{1}{5}x^5 \] Now, we evaluate this from 0 to 3: \[ V = \pi \left[ \left(3(3)^3 - \frac{3}{2}(3)^4 + \frac{1}{5}(3)^5\right) - \left(0\right) \right] \] Calculating each term: - \(3(3)^3 = 3 \times 27 = 81\) - \(-\frac{3}{2}(3)^4 = -\frac{3}{2} \times 81 = -121.5\) - \(\frac{1}{5}(3)^5 = \frac{1}{5} \times 243 = 48.6\) Now combine these results: \[ V = \pi \left( 81 - 121.5 + 48.6 \right) = \pi \left( 81 + 48.6 - 121.5 \right) = \pi \left( 9.1 \right) \] Thus, the final volume of the solid is: \[ V = 9.1\pi \text{ cubic units.} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad