Solve each of the following equations \( \begin{array}{ll}\text { (a) }\left|x-\frac{1}{2}\right|=\frac{5}{2} & \text { (b) }|4 x-3|=|1+2 x| \\ \text { (c) }|x+1|-|x+2|=0 & \text { (d) }|x+1|=-3 \\ \text { (e) } \sqrt{2 x-1}=3 & \text { (f) } \sqrt{3 x-8}=\sqrt{x+2}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let’s solve each of the equations one by one: **(a)** \(\left|x - \frac{1}{2}\right| = \frac{5}{2}\) This absolute value equation gives us two cases to consider: 1. \(x - \frac{1}{2} = \frac{5}{2}\) \(x = \frac{5}{2} + \frac{1}{2} = 3\) 2. \(x - \frac{1}{2} = -\frac{5}{2}\) \(x = -\frac{5}{2} + \frac{1}{2} = -2\) **Solutions:** \(x = 3\) or \(x = -2\) --- **(b)** \(|4x - 3| = |1 + 2x|\) We can set up four cases from the absolute values. **Case 1:** \(4x - 3 = 1 + 2x\) \(2x = 4 \Rightarrow x = 2\) **Case 2:** \(4x - 3 = - (1 + 2x)\) \(4x - 3 = -1 - 2x\) \(6x = 2 \Rightarrow x = \frac{1}{3}\) **Case 3:** \(- (4x - 3) = 1 + 2x\) \(-4x + 3 = 1 + 2x\) \(-6x = -2 \Rightarrow x = \frac{1}{3}\) (already found) **Case 4:** \(- (4x - 3) = - (1 + 2x)\) \(-4x + 3 = -1 - 2x\) \(-2 = 2x \Rightarrow x = -1\) **Solutions:** \(x = 2, x = \frac{1}{3}, x = -1\) --- **(c)** \(|x + 1| - |x + 2| = 0\) This simplifies to \(|x + 1| = |x + 2|\). There are two cases: 1. \(x + 1 = x + 2 \Rightarrow\) (not possible). 2. \(x + 1 = - (x + 2) \Rightarrow 2x + 3 = 0 \Rightarrow x = -\frac{3}{2}\) **Solution:** \(x = -\frac{3}{2}\) --- **(d)** \(|x + 1| = -3\) An absolute value cannot equal a negative number, so there are no solutions here. **Solution:** No solution. --- **(e)** \(\sqrt{2x - 1} = 3\) Squaring both sides: \(2x - 1 = 9\) \(2x = 10 \Rightarrow x = 5\) **Solution:** \(x = 5\) --- **(f)** \(\sqrt{3x - 8} = \sqrt{x + 2}\) Squaring both sides: \(3x - 8 = x + 2\) \(2x = 10 \Rightarrow x = 5\) We must verify \(x = 5\) in the original equation: \(\sqrt{3(5) - 8} = \sqrt{5 + 2}\) \(\sqrt{15 - 8} = \sqrt{7}\) Both sides equal \(\sqrt{7}\). **Solution:** \(x = 5\) --- **Final Solutions Summary:** - (a) \(x = 3\) or \(x = -2\) - (b) \(x = 2, \frac{1}{3}, -1\) - (c) \(x = -\frac{3}{2}\) - (d) No solution - (e) \(x = 5\) - (f) \(x = 5\)
