Pregunta
upstudy study bank question image url

Martina has decided to invest to help with her retirement savings. How much would she have to invest to have \( \$ 136,900 \) after 20 years, assuming an interest rate of \( 3.58 \% \) compounded monthly? Do not round any intermediate computations, and round your final answer to the nearest dollar. If necessary, refer to the list of financial formulas.

Ask by Warren Mccoy. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Martina needs to invest approximately \$67,028 today to have \$136,900 after 20 years at a 3.58% annual interest rate compounded monthly.

Solución

To determine how much Martina needs to invest today to have \( \$136,900 \) after 20 years with an interest rate of \( 3.58\% \) compounded monthly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. In this case: - \( A = 136900 \) - \( r = 0.0358 \) - \( n = 12 \) (since the interest is compounded monthly) - \( t = 20 \) We need to solve for \( P \): \[ P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} \] Now, let's calculate \( P \) step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{r}{n} = \frac{0.0358}{12} \] 2. Calculate \( nt \): \[ nt = 12 \times 20 \] 3. Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \). 4. Finally, calculate \( P \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(12\times 20\) - step1: Multiply the numbers: \(240\) Calculate or simplify the expression \( 0.0358/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.0358}{12}\) - step1: Convert the expressions: \(\frac{\frac{179}{5000}}{12}\) - step2: Multiply by the reciprocal: \(\frac{179}{5000}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{179}{5000\times 12}\) - step4: Multiply: \(\frac{179}{60000}\) Calculate or simplify the expression \( (1 + 0.00298)^(240) \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.00298\right)^{240}\) - step1: Add the numbers: \(1.00298^{240}\) - step2: Convert the expressions: \(\left(\frac{50149}{50000}\right)^{240}\) - step3: Use the properties of exponents: \(\frac{50149^{240}}{50000^{240}}\) Calculate or simplify the expression \( 136900/(2.042422) \). Calculate the value by following steps: - step0: Calculate: \(\frac{136900}{2.042422}\) - step1: Convert the expressions: \(\frac{136900}{\frac{1021211}{500000}}\) - step2: Multiply by the reciprocal: \(136900\times \frac{500000}{1021211}\) - step3: Multiply: \(\frac{136900\times 500000}{1021211}\) - step4: Multiply: \(\frac{68450000000}{1021211}\) Now, let's summarize the calculations step by step: 1. **Calculate \( \frac{r}{n} \)**: \[ \frac{r}{n} = \frac{0.0358}{12} \approx 0.002983 \] 2. **Calculate \( nt \)**: \[ nt = 12 \times 20 = 240 \] 3. **Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \)**: \[ \left(1 + 0.002983\right)^{240} \approx 2.042422 \] 4. **Calculate \( P \)**: \[ P = \frac{136900}{2.042422} \approx 67028.26 \] Finally, rounding to the nearest dollar, Martina would need to invest approximately: \[ \boxed{67028} \] This is the amount she needs to invest today to reach her retirement goal of \( \$136,900 \) after 20 years at an interest rate of \( 3.58\% \) compounded monthly.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much Martina needs to invest now to have \( \$ 136,900 \) after 20 years at a monthly compounded interest rate of \( 3.58\% \), we can use the formula for future value: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] where: - \( PV \) is the present value (the amount to invest now), - \( FV = 136900 \) (future value), - \( r = 0.0358 \) (annual interest rate), - \( n = 12 \) (number of compounding periods per year), - \( t = 20 \) (number of years). Plugging in the values, we get: \[ PV = \frac{136900}{\left(1 + \frac{0.0358}{12}\right)^{12 \times 20}} \] Calculating the monthly interest rate: \[ \frac{0.0358}{12} = 0.00298333 \] Then, calculate the total number of compounding periods: \[ 12 \times 20 = 240 \] Now we substitute back into the formula: \[ PV = \frac{136900}{(1 + 0.00298333)^{240}} \approx \frac{136900}{1.879465} \] Finally, calculating the present value: \[ PV \approx \frac{136900}{1.879465} \approx 72,882 \] Thus, Martina would need to invest approximately **$72,882** to reach her goal of $136,900 after 20 years at the specified interest rate.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad