Pregunta
upstudy study bank question image url

Use the first derivative test to determine the location of each local extremum and the value of the function at this extremum. \( f(x)=x \ln |x| \)

Ask by Peters Cook. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = x \ln |x| \) has a local minimum at \( x = \frac{1}{e} \) with a function value of \( -\frac{1}{e} \), and a local maximum at \( x = -\frac{1}{e} \) with a function value of \( \frac{1}{e} \).

Solución

Alright, I need to determine the local extrema of the function \( f(x) = x \ln |x| \) using the first derivative test. Let's start by understanding the function and its domain. First, the function \( f(x) = x \ln |x| \) is defined for all real numbers except \( x = 0 \), where the logarithm is undefined. So, the domain is \( x \in (-\infty, 0) \cup (0, \infty) \). Next, I'll find the first derivative of \( f(x) \) to identify critical points. To differentiate \( f(x) \), I'll use the product rule since it's a product of two functions: \( x \) and \( \ln |x| \). The product rule states that if \( f(x) = u(x) \cdot v(x) \), then \( f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \). Here, \( u(x) = x \) and \( v(x) = \ln |x| \). First, find \( u'(x) \): \( u'(x) = 1 \) Next, find \( v'(x) \): \( v(x) = \ln |x| \) Since \( \ln |x| \) is the natural logarithm of the absolute value of \( x \), its derivative is: \( v'(x) = \frac{1}{x} \) for \( x > 0 \) and \( v'(x) = \frac{1}{x} \) for \( x < 0 \) because the derivative of \( \ln |x| \) is the same in both intervals. Now, apply the product rule: \( f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \) \( f'(x) = 1 \cdot \ln |x| + x \cdot \frac{1}{x} \) Simplify the expression: \( f'(x) = \ln |x| + 1 \) Now, set the first derivative equal to zero to find critical points: \( \ln |x| + 1 = 0 \) \( \ln |x| = -1 \) Exponentiate both sides to solve for \( |x| \): \( |x| = e^{-1} \) \( |x| = \frac{1}{e} \) This gives two critical points: \( x = \frac{1}{e} \) and \( x = -\frac{1}{e} \) Now, I'll analyze the sign of the first derivative around these critical points to determine the nature of the extrema. 1. **For \( x = \frac{1}{e} \):** - Choose a test point \( x = 0.5 \) (which is greater than \( \frac{1}{e} \approx 0.3679 \)): \( f'(0.5) = \ln |0.5| + 1 = \ln 0.5 + 1 \approx -0.6931 + 1 = 0.3069 > 0 \) - Choose a test point \( x = 0.3 \) (which is less than \( \frac{1}{e} \)): \( f'(0.3) = \ln |0.3| + 1 = \ln 0.3 + 1 \approx -1.204 + 1 = -0.204 < 0 \) - Since the derivative changes from negative to positive at \( x = \frac{1}{e} \), there is a local minimum at this point. 2. **For \( x = -\frac{1}{e} \):** - Choose a test point \( x = -0.5 \) (which is less than \( -\frac{1}{e} \)): \( f'(-0.5) = \ln |-0.5| + 1 = \ln 0.5 + 1 \approx -0.6931 + 1 = 0.3069 > 0 \) - Choose a test point \( x = -0.3 \) (which is greater than \( -\frac{1}{e} \)): \( f'(-0.3) = \ln |-0.3| + 1 = \ln 0.3 + 1 \approx -1.204 + 1 = -0.204 < 0 \) - Since the derivative changes from positive to negative at \( x = -\frac{1}{e} \), there is a local maximum at this point. Now, I'll calculate the function values at these critical points to find the extrema. 1. **At \( x = \frac{1}{e} \):** \( f\left(\frac{1}{e}\right) = \frac{1}{e} \ln \left|\frac{1}{e}\right| = \frac{1}{e} \cdot (-1) = -\frac{1}{e} \) 2. **At \( x = -\frac{1}{e} \):** \( f\left(-\frac{1}{e}\right) = -\frac{1}{e} \ln \left|-\frac{1}{e}\right| = -\frac{1}{e} \cdot (-1) = \frac{1}{e} \) **Summary of Findings:** - **Local Minimum:** At \( x = \frac{1}{e} \), the function value is \( -\frac{1}{e} \). - **Local Maximum:** At \( x = -\frac{1}{e} \), the function value is \( \frac{1}{e} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the local extrema of \( f(x) = x \ln |x| \), we first need to compute the first derivative. The derivative \( f'(x) \) is given by: \[ f'(x) = \ln |x| + 1 \] Next, set the derivative equal to zero to find critical points: \[ \ln |x| + 1 = 0 \Rightarrow \ln |x| = -1 \Rightarrow |x| = e^{-1} = \frac{1}{e} \] This gives us two critical points: \( x = \frac{1}{e} \) and \( x = -\frac{1}{e} \). Now, we’ll use the first derivative test to determine whether these points are local minima or maxima. We’ll examine the signs of \( f'(x) \) around the critical points: 1. For \( x < -\frac{1}{e} \), choose \( x = -1 \): \[ f'(-1) = \ln(1) + 1 = 1 > 0 \] (increasing) 2. For mid-range values, choose \( x = -\frac{1}{e} \): \[ f'(-\frac{1}{e}) = \ln(\frac{1}{e}) + 1 = -1 + 1 = 0 \] (critical point) 3. For \( -\frac{1}{e} < x < \frac{1}{e} \), choose \( x = -0.1 \): \[ f'(-0.1) = \ln(0.1) + 1 < 0 \] (decreasing) 4. For \( x = \frac{1}{e} \): \[ f'(\frac{1}{e}) = 0 \] (critical point) 5. For \( x > \frac{1}{e} \), choose \( x = 1 \): \[ f'(1) = \ln(1) + 1 = 1 > 0 \] (increasing) From this, we see that \( f(x) \) changes from increasing to decreasing at \( x = -\frac{1}{e} \), which means there is a local maximum there. Conversely, it changes from decreasing to increasing at \( x = \frac{1}{e} \), indicating a local minimum. Now we calculate the values of the function at these points: At \( x = -\frac{1}{e} \): \[ f\left(-\frac{1}{e}\right) = -\frac{1}{e} \ln\left(\frac{1}{e}\right) = -\frac{1}{e} \cdot (-1) = \frac{1}{e} \] At \( x = \frac{1}{e} \): \[ f\left(\frac{1}{e}\right) = \frac{1}{e} \ln\left(\frac{1}{e}\right) = \frac{1}{e} \cdot (-1) = -\frac{1}{e} \] To summarize: - Local Maximum at \( x = -\frac{1}{e} \) with \( f(-\frac{1}{e}) = \frac{1}{e} \) - Local Minimum at \( x = \frac{1}{e} \) with \( f(\frac{1}{e}) = -\frac{1}{e} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad