\( \begin{array}{ll}\text { a) } \frac{3^{x+1}-2 \cdot 3^{x}}{3^{x} \cdot 2} & \text { b) } \frac{2^{2 x+3}-5 \cdot 2^{2 x+1}}{4^{x+2}} \\ \text { c) } \frac{35^{a}-3 \cdot 5^{a}}{2^{2 a} \cdot 7 a \cdot 2^{2 a}} & \text { d) } \frac{3^{a+1} \cdot 4^{a}+5 \cdot 3^{a+1}}{4^{2 a}-25} \\ \text { e) } \frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3} \cdot 7^{a}} & \text { f) } \frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3 \cdot 2^{a-1}} \\ \text { g) } \frac{-2^{3}-2^{5}}{5^{a+1} \cdot 2^{2}} & \text { h) } \frac{\frac{3}{4^{2}+4^{a-2}}}{3 \cdot 4^{3}+4^{a+3}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Imagine stepping back in time to the great mathematicians of ancient civilizations. The use of exponents can be traced back to the Egyptians and Babylonians, who used geometric principles and principles of pyramids that foreshadowed our understanding of exponential growth. They didn't have modern notation, but they sure had ideas that are foundational today! Now, when it comes to applying these algebraic expressions in the real world, think about how they appear in various fields such as finance for calculating compound interest, in physics for exponential decay or growth processes, and in computer science for algorithm analysis. Understanding how to manipulate these expressions can lead to powerful insights in data analysis, optimization, and more!
