Pregunta
upstudy study bank question image url

The functions \( f \) and \( g \) are defined as \( f(x)=8 x+5 \) and \( g(x)=7-9 x \). a) Find the domain of \( f, g, f+g, f-g, f g, f f, \frac{f}{g} \), and \( \frac{g}{f} \). b) Find \( (f+g)(x),(f-g)(x),(f g)(x),(f f)(x),\left(\frac{f}{g}\right)(x) \), and \( \left(\frac{g}{f}\right)(x) \). a) The domain of \( f \) is \( \square \). (Type your answer in interval notation.)

Ask by Goodwin Black. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The domain of \( f \) is \( (-\infty, \infty) \).

Solución

We are given   f(x) = 8x + 5  and  g(x) = 7 – 9x. Below, we first determine the domains of the various functions, and then we compute the combined functions. ───────────────────────────── Part (a): Domains 1. Domain of f:   Since f(x) = 8x + 5 is a linear function, it is defined for every real number.   Domain: (–∞, ∞) 2. Domain of g:   g(x) = 7 – 9x is also linear, so it is defined for every real number.   Domain: (–∞, ∞) 3. Domain of (f + g) and (f – g):   Since f+g and f–g are sums/differences of two linear (hence continuous) functions, they are defined for all real numbers.   Domain for both: (–∞, ∞) 4. Domain of (f · g):   The product of two linear functions is a polynomial, which is defined for all real numbers.   Domain: (–∞, ∞) 5. Domain of (f f) (interpreted as f composed with f, i.e. f(f(x))):   Since f maps all real numbers to all real numbers, the composition f∘f is defined for every real x.   Domain: (–∞, ∞) 6. Domain of (f/g):   This is a rational function. The only restrictions occur when the denominator is zero.   Solve g(x) = 0:     7 – 9x = 0 ⟹ x = 7/9.   Thus, (f/g)(x) is defined for all real numbers except x = 7/9.   Domain: (–∞, 7/9) ∪ (7/9, ∞) 7. Domain of (g/f):   Similarly, for (g/f)(x), we need f(x) ≠ 0.   Solve f(x) = 0:     8x + 5 = 0 ⟹ x = –5/8.   So, (g/f)(x) is defined for all x except x = –5/8.   Domain: (–∞, –5/8) ∪ (–5/8, ∞) ───────────────────────────── Part (b): Function Combinations 1. (f + g)(x):   = f(x) + g(x)   = (8x + 5) + (7 – 9x)   = 8x – 9x + 5 + 7   = –x + 12 2. (f – g)(x):   = f(x) – g(x)   = (8x + 5) – (7 – 9x)   = 8x + 5 – 7 + 9x   = 17x – 2 3. (f · g)(x):   = f(x)·g(x)   = (8x + 5)(7 – 9x)   Expand:     = 8x·7 + 8x·(–9x) + 5·7 + 5·(–9x)     = 56x – 72x² + 35 – 45x   Combine like terms:     = –72x² + 11x + 35 4. (f f)(x) (interpreted as f composed with f, f(f(x))):   = f(f(x))   = f(8x + 5)   = 8(8x + 5) + 5   = 64x + 40 + 5   = 64x + 45 5. (f/g)(x):   = [f(x)] / [g(x)]   = (8x + 5) / (7 – 9x)   (Remember: x ≠ 7/9.) 6. (g/f)(x):   = [g(x)] / [f(x)]   = (7 – 9x) / (8x + 5)   (Remember: x ≠ –5/8.) ───────────────────────────── Final Answers for Part (a): a) The domain of f is (–∞, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The functions \( f(x) = 8x + 5 \) and \( g(x) = 7 - 9x \) are both linear functions, which means they are defined for all real numbers. Therefore, the domain of \( f \) is \( (-\infty, \infty) \). For the combined functions: - \( f + g \), \( f - g \), and \( f f \) also have a domain of \( (-\infty, \infty) \). - The products \( fg \) and the quotients \( \frac{f}{g} \) and \( \frac{g}{f} \) are also defined for all \( x \) except where \( g(x) = 0 \) and \( f(x) = 0 \), respectively. To find when \( g(x) = 0 \), we solve \( 7 - 9x = 0 \), giving \( x = \frac{7}{9} \). Thus, \( \frac{f}{g} \) is defined everywhere except \( x = \frac{7}{9} \). For \( f(x) = 0 \), solve \( 8x + 5 = 0 \) yielding \( x = -\frac{5}{8} \), so \( \frac{g}{f} \) is undefined there. Summarizing the domains: - Domain of \( f \): \( (-\infty, \infty) \) - Domain of \( g \): \( (-\infty, \infty) \) - Domain of \( f + g \): \( (-\infty, \infty) \) - Domain of \( f - g \): \( (-\infty, \infty) \) - Domain of \( fg \): \( (-\infty, \infty) \) - Domain of \( ff \): \( (-\infty, \infty) \) - Domain of \( \frac{f}{g} \): \( (-\infty, \frac{7}{9}) \cup (\frac{7}{9}, \infty) \) - Domain of \( \frac{g}{f} \): \( (-\infty, -\frac{5}{8}) \cup (-\frac{5}{8}, \infty) \) b) Now let's find the functions: 1. \( (f + g)(x) = (8x + 5) + (7 - 9x) = -x + 12 \) 2. \( (f - g)(x) = (8x + 5) - (7 - 9x) = 17x - 2 \) 3. \( (fg)(x) = (8x + 5)(7 - 9x) = -72x^2 + 43x + 35 \) 4. \( (ff)(x) = f(f(x)) = f(8x + 5) = 8(8x + 5) + 5 = 64x + 45 \) 5. \( \left(\frac{f}{g}\right)(x) = \frac{8x + 5}{7 - 9x} \) 6. \( \left(\frac{g}{f}\right)(x) = \frac{7 - 9x}{8x + 5} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad