Pregunta
upstudy study bank question image url

EXERCISE 1 Solve for \( x \) in each of the following equations and check each solution. 1. \( 3 x-4=8 \) 2. \( -5(x-2)+4 x=x(3-x)-4(x-2)+x^{2}+2 \) 3. \( 3(2 x-1)+4=3-5(1-x) \) 4. \( 2(x-3)+5=7-2(1-x) \) 5. \( x-(x-2)-2(x-3)=0 \) 6. \( x(2-3 x)+(x+2)(3 x-2)=0 \) 7. \( -2+(x-1)(x+2)=x(x-3)+4(x-1) \) 8. \( (x-3)(x+2)=x(x+1)-3(x+2)+3 \) 9. \( (x+3)(x+4)=4-x(5-x) \) 10. \( 2(x-3)-x(x-2)=(3-x)(x-2)-x \)

Ask by Lang Beck. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Solutions:** 1. \( x = 4 \) 2. All real numbers (\( x \in \mathbb{R} \)) 3. \( x = -3 \) 4. No solution (\( x \in \varnothing \)) 5. \( x = 4 \) 6. \( x = \frac{1}{4} \) 7. All real numbers (\( x \in \mathbb{R} \)) 8. \( x = 3 \) 9. \( x = -3 \) or \( x = 5 \) 10. \( x = 2 \)

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(x-\left(x-2\right)-2\left(x-3\right)=0\) - step1: Subtract the terms: \(2-2\left(x-3\right)=0\) - step2: Calculate: \(8-2x=0\) - step3: Move the constant to the right side: \(-2x=0-8\) - step4: Remove 0: \(-2x=-8\) - step5: Change the signs: \(2x=8\) - step6: Divide both sides: \(\frac{2x}{2}=\frac{8}{2}\) - step7: Divide the numbers: \(x=4\) Solve the equation \( -5(x-2)+4x=x(3-x)-4(x-2)+x^{2}+2 \). Solve the equation by following steps: - step0: Solve for \(x\): \(-5\left(x-2\right)+4x=x\left(3-x\right)-4\left(x-2\right)+x^{2}+2\) - step1: Add the terms: \(-5\left(x-2\right)+4x=3x-4\left(x-2\right)+2\) - step2: Move the expression to the left side: \(-5\left(x-2\right)+4x-\left(3x-4\left(x-2\right)+2\right)=0\) - step3: Calculate: \(-5\left(x-2\right)+x+4\left(x-2\right)-2=0\) - step4: Calculate: \(0=0\) - step5: The statement is true: \(x \in \mathbb{R}\) Solve the equation \( 2(x-3)-x(x-2)=(3-x)(x-2)-x \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\left(x-3\right)-x\left(x-2\right)=\left(3-x\right)\left(x-2\right)-x\) - step1: Move the expression to the left side: \(2\left(x-3\right)-x\left(x-2\right)-\left(\left(3-x\right)\left(x-2\right)-x\right)=0\) - step2: Subtract the terms: \(0=0\) - step3: The statement is true: \(x \in \mathbb{R}\) Solve the equation \( x(2-3x)+(x+2)(3x-2)=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(x\left(2-3x\right)+\left(x+2\right)\left(3x-2\right)=0\) - step1: Add the terms: \(2\left(3x-2\right)=0\) - step2: Rewrite the expression: \(3x-2=0\) - step3: Move the constant to the right side: \(3x=0+2\) - step4: Remove 0: \(3x=2\) - step5: Divide both sides: \(\frac{3x}{3}=\frac{2}{3}\) - step6: Divide the numbers: \(x=\frac{2}{3}\) Solve the equation \( (x+3)(x+4)=4-x(5-x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left(x+3\right)\left(x+4\right)=4-x\left(5-x\right)\) - step1: Calculate: \(x^{2}+7x+12=4-x\left(5-x\right)\) - step2: Calculate: \(x^{2}+7x+12=4-5x+x^{2}\) - step3: Move the expression to the left side: \(x^{2}+7x+12-\left(4-5x+x^{2}\right)=0\) - step4: Calculate: \(12x+8=0\) - step5: Move the constant to the right side: \(12x=0-8\) - step6: Remove 0: \(12x=-8\) - step7: Divide both sides: \(\frac{12x}{12}=\frac{-8}{12}\) - step8: Divide the numbers: \(x=-\frac{2}{3}\) Solve the equation \( -2+(x-1)(x+2)=x(x-3)+4(x-1) \). Solve the equation by following steps: - step0: Solve for \(x\): \(-2+\left(x-1\right)\left(x+2\right)=x\left(x-3\right)+4\left(x-1\right)\) - step1: Move the expression to the left side: \(-2+\left(x-1\right)\left(x+2\right)-\left(x\left(x-3\right)+4\left(x-1\right)\right)=0\) - step2: Remove the parentheses: \(-2+\left(x-1\right)\left(x+2\right)-x\left(x-3\right)-4\left(x-1\right)=0\) - step3: Calculate: \(0=0\) - step4: The statement is true: \(x \in \mathbb{R}\) Solve the equation \( 3x-4=8 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3x-4=8\) - step1: Move the constant to the right side: \(3x=8+4\) - step2: Add the numbers: \(3x=12\) - step3: Divide both sides: \(\frac{3x}{3}=\frac{12}{3}\) - step4: Divide the numbers: \(x=4\) Solve the equation \( 3(2x-1)+4=3-5(1-x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(3\left(2x-1\right)+4=3-5\left(1-x\right)\) - step1: Move the expression to the left side: \(3\left(2x-1\right)+4-\left(3-5\left(1-x\right)\right)=0\) - step2: Calculate: \(3\left(2x-1\right)+1+5\left(1-x\right)=0\) - step3: Calculate: \(x+3=0\) - step4: Move the constant to the right side: \(x=0-3\) - step5: Remove 0: \(x=-3\) Solve the equation \( 2(x-3)+5=7-2(1-x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\left(x-3\right)+5=7-2\left(1-x\right)\) - step1: Move the expression to the left side: \(2\left(x-3\right)+5-\left(7-2\left(1-x\right)\right)=0\) - step2: Calculate: \(-6=0\) - step3: The statement is false: \(x \in \varnothing \) Solve the equation \( (x-3)(x+2)=x(x+1)-3(x+2)+3 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left(x-3\right)\left(x+2\right)=x\left(x+1\right)-3\left(x+2\right)+3\) - step1: Calculate: \(x^{2}-x-6=x\left(x+1\right)-3\left(x+2\right)+3\) - step2: Calculate: \(x^{2}-x-6=x^{2}-2x-3\) - step3: Move the expression to the left side: \(x^{2}-x-6-\left(x^{2}-2x-3\right)=0\) - step4: Calculate: \(x-3=0\) - step5: Move the constant to the right side: \(x=0+3\) - step6: Remove 0: \(x=3\) Let's solve each equation step by step and check the solutions. ### 1. Solve \( 3x - 4 = 8 \) **Step 1:** Add 4 to both sides: \[ 3x = 12 \] **Step 2:** Divide by 3: \[ x = 4 \] **Check:** Substitute \( x = 4 \) back into the original equation: \[ 3(4) - 4 = 12 - 4 = 8 \quad \text{(True)} \] **Solution:** \( x = 4 \) --- ### 2. Solve \( -5(x-2) + 4x = x(3-x) - 4(x-2) + x^2 + 2 \) **Step 1:** Expand both sides: \[ -5x + 10 + 4x = 3x - x^2 - 4x + 8 + x^2 + 2 \] **Step 2:** Combine like terms: \[ -x + 10 = -x + 10 \] This is true for all \( x \). **Check:** All real numbers satisfy the equation. **Solution:** \( x \in \mathbb{R} \) (All real solutions) --- ### 3. Solve \( 3(2x - 1) + 4 = 3 - 5(1 - x) \) **Step 1:** Expand both sides: \[ 6x - 3 + 4 = 3 - 5 + 5x \] **Step 2:** Simplify: \[ 6x + 1 = -2 + 5x \] **Step 3:** Rearrange: \[ 6x - 5x = -2 - 1 \] \[ x = -3 \] **Check:** Substitute \( x = -3 \): \[ 3(2(-3) - 1) + 4 = 3 - 5(1 - (-3)) \] \[ 3(-6 - 1) + 4 = 3 - 5(4) \] \[ -21 + 4 = 3 - 20 \] \[ -17 = -17 \quad \text{(True)} \] **Solution:** \( x = -3 \) --- ### 4. Solve \( 2(x - 3) + 5 = 7 - 2(1 - x) \) **Step 1:** Expand both sides: \[ 2x - 6 + 5 = 7 - 2 + 2x \] **Step 2:** Simplify: \[ 2x - 1 = 5 + 2x \] **Step 3:** Rearrange: \[ -1 = 5 \quad \text{(False)} \] **Check:** No solutions exist. **Solution:** \( x \in \varnothing \) (No solution) --- ### 5. Solve \( x - (x - 2) - 2(x - 3) = 0 \) **Step 1:** Expand: \[ x - x + 2 - 2x + 6 = 0 \] **Step 2:** Combine like terms: \[ -2x + 8 = 0 \] **Step 3:** Solve for \( x \): \[ 2x = 8 \quad \Rightarrow \quad x = 4 \] **Check:** Substitute \( x = 4 \): \[ 4 - (4 - 2) - 2(4 - 3) = 0 \] \[ 4 - 2 - 2 = 0 \quad \text{(True)} \] **Solution:** \( x = 4 \) --- ### 6. Solve \( x(2 - 3x) + (x + 2)(3x - 2) = 0 \) **Step 1:** Expand: \[ 2x - 3x^2 + 3x^2 + 6x - 2 = 0 \] **Step 2:** Combine like terms: \[ 8x - 2 = 0 \] **Step 3:** Solve for \( x \): \[ 8x = 2 \quad \Rightarrow \quad x = \frac{1}{4} \] **Check:** Substitute \( x = \frac{1}{4} \): \[ \frac{1}{4}(2 - 3(\frac{1}{4})) + (\frac{1}{4} + 2)(3(\frac{1}{4}) - 2) = 0 \] \[ \frac{1}{4}(2 - \frac{3}{4}) + (\frac{1}{4} + 2)(\frac{3}{4} - 2) = 0 \] \[ \frac{1}{4}(\frac{5}{4}) + (\frac{9}{4})(-\frac{5}{4}) = 0 \] \[ \frac{5}{16} - \frac{45}{16} = 0 \quad \text{(True)} \] **Solution:** \( x = \frac{1}{4} \) --- ### 7. Solve \( -2 + (x - 1)(x + 2) = x(x - 3) + 4(x - 1) \) **Step 1:** Expand: \[ -2 + (x^2 + x - 2) = x^2 - 3x + 4x - 4 \] **Step 2:** Combine like terms: \[ x^2 + x - 2 - 2 = x^2 + x - 4 \] **Step 3:** Rearrange: \[ -4 = -4 \quad \text{(True)} \] **Check:** All real numbers satisfy the equation. **Solution:** \( x \in \mathbb{R} \) (All real solutions) --- ### 8. Solve \( (x - 3)(x + 2) = x(x + 1) - 3(x + 2) + 3 \) **Step 1:** Expand: \[ x^2 - x - 6 = x^2 + x - 3x - 6 + 3 \] **Step 2:** Combine like terms: \[ x^2 - x - 6 = x^2 - 2x - 3 \] **Step 3:** Rearrange: \[ -x + 2x - 6 + 3 = 0 \] \[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \] **Check:** Substitute \( x = 3 \): \[ (3 - 3)(3 + 2) = 3(3 + 1) - 3(

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's dive into two fun and fascinating aspects of solving equations! Ever wonder how the concept of algebra started? Believe it or not, it has roots that date back to the ancient Babylonians around 2000 BCE! They used basic forms of algebra for problem-solving, which laid the foundation for modern mathematics. The word "algebra" itself comes from the Arabic term "al-jabr," meaning "reunion of broken parts." So, you're not just solving equations; you're participating in a mathematical tradition that spans millennia! Now, speaking of real-world applications, solving equations is more than just classroom work; it’s a critical skill in many professions! Engineers use algebra to calculate loads and forces, while economists rely on equations to analyze market trends and consumer behavior. Next time you solve for \( x \), just think: you could be honing skills that might help you design bridges or optimize production processes in a factory someday!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad