Responder
**Solutions:**
1. \( x = 4 \)
2. All real numbers (\( x \in \mathbb{R} \))
3. \( x = -3 \)
4. No solution (\( x \in \varnothing \))
5. \( x = 4 \)
6. \( x = \frac{1}{4} \)
7. All real numbers (\( x \in \mathbb{R} \))
8. \( x = 3 \)
9. \( x = -3 \) or \( x = 5 \)
10. \( x = 2 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x-\left(x-2\right)-2\left(x-3\right)=0\)
- step1: Subtract the terms:
\(2-2\left(x-3\right)=0\)
- step2: Calculate:
\(8-2x=0\)
- step3: Move the constant to the right side:
\(-2x=0-8\)
- step4: Remove 0:
\(-2x=-8\)
- step5: Change the signs:
\(2x=8\)
- step6: Divide both sides:
\(\frac{2x}{2}=\frac{8}{2}\)
- step7: Divide the numbers:
\(x=4\)
Solve the equation \( -5(x-2)+4x=x(3-x)-4(x-2)+x^{2}+2 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-5\left(x-2\right)+4x=x\left(3-x\right)-4\left(x-2\right)+x^{2}+2\)
- step1: Add the terms:
\(-5\left(x-2\right)+4x=3x-4\left(x-2\right)+2\)
- step2: Move the expression to the left side:
\(-5\left(x-2\right)+4x-\left(3x-4\left(x-2\right)+2\right)=0\)
- step3: Calculate:
\(-5\left(x-2\right)+x+4\left(x-2\right)-2=0\)
- step4: Calculate:
\(0=0\)
- step5: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( 2(x-3)-x(x-2)=(3-x)(x-2)-x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\left(x-3\right)-x\left(x-2\right)=\left(3-x\right)\left(x-2\right)-x\)
- step1: Move the expression to the left side:
\(2\left(x-3\right)-x\left(x-2\right)-\left(\left(3-x\right)\left(x-2\right)-x\right)=0\)
- step2: Subtract the terms:
\(0=0\)
- step3: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( x(2-3x)+(x+2)(3x-2)=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x\left(2-3x\right)+\left(x+2\right)\left(3x-2\right)=0\)
- step1: Add the terms:
\(2\left(3x-2\right)=0\)
- step2: Rewrite the expression:
\(3x-2=0\)
- step3: Move the constant to the right side:
\(3x=0+2\)
- step4: Remove 0:
\(3x=2\)
- step5: Divide both sides:
\(\frac{3x}{3}=\frac{2}{3}\)
- step6: Divide the numbers:
\(x=\frac{2}{3}\)
Solve the equation \( (x+3)(x+4)=4-x(5-x) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(x+3\right)\left(x+4\right)=4-x\left(5-x\right)\)
- step1: Calculate:
\(x^{2}+7x+12=4-x\left(5-x\right)\)
- step2: Calculate:
\(x^{2}+7x+12=4-5x+x^{2}\)
- step3: Move the expression to the left side:
\(x^{2}+7x+12-\left(4-5x+x^{2}\right)=0\)
- step4: Calculate:
\(12x+8=0\)
- step5: Move the constant to the right side:
\(12x=0-8\)
- step6: Remove 0:
\(12x=-8\)
- step7: Divide both sides:
\(\frac{12x}{12}=\frac{-8}{12}\)
- step8: Divide the numbers:
\(x=-\frac{2}{3}\)
Solve the equation \( -2+(x-1)(x+2)=x(x-3)+4(x-1) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-2+\left(x-1\right)\left(x+2\right)=x\left(x-3\right)+4\left(x-1\right)\)
- step1: Move the expression to the left side:
\(-2+\left(x-1\right)\left(x+2\right)-\left(x\left(x-3\right)+4\left(x-1\right)\right)=0\)
- step2: Remove the parentheses:
\(-2+\left(x-1\right)\left(x+2\right)-x\left(x-3\right)-4\left(x-1\right)=0\)
- step3: Calculate:
\(0=0\)
- step4: The statement is true:
\(x \in \mathbb{R}\)
Solve the equation \( 3x-4=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3x-4=8\)
- step1: Move the constant to the right side:
\(3x=8+4\)
- step2: Add the numbers:
\(3x=12\)
- step3: Divide both sides:
\(\frac{3x}{3}=\frac{12}{3}\)
- step4: Divide the numbers:
\(x=4\)
Solve the equation \( 3(2x-1)+4=3-5(1-x) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3\left(2x-1\right)+4=3-5\left(1-x\right)\)
- step1: Move the expression to the left side:
\(3\left(2x-1\right)+4-\left(3-5\left(1-x\right)\right)=0\)
- step2: Calculate:
\(3\left(2x-1\right)+1+5\left(1-x\right)=0\)
- step3: Calculate:
\(x+3=0\)
- step4: Move the constant to the right side:
\(x=0-3\)
- step5: Remove 0:
\(x=-3\)
Solve the equation \( 2(x-3)+5=7-2(1-x) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\left(x-3\right)+5=7-2\left(1-x\right)\)
- step1: Move the expression to the left side:
\(2\left(x-3\right)+5-\left(7-2\left(1-x\right)\right)=0\)
- step2: Calculate:
\(-6=0\)
- step3: The statement is false:
\(x \in \varnothing \)
Solve the equation \( (x-3)(x+2)=x(x+1)-3(x+2)+3 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(x-3\right)\left(x+2\right)=x\left(x+1\right)-3\left(x+2\right)+3\)
- step1: Calculate:
\(x^{2}-x-6=x\left(x+1\right)-3\left(x+2\right)+3\)
- step2: Calculate:
\(x^{2}-x-6=x^{2}-2x-3\)
- step3: Move the expression to the left side:
\(x^{2}-x-6-\left(x^{2}-2x-3\right)=0\)
- step4: Calculate:
\(x-3=0\)
- step5: Move the constant to the right side:
\(x=0+3\)
- step6: Remove 0:
\(x=3\)
Let's solve each equation step by step and check the solutions.
### 1. Solve \( 3x - 4 = 8 \)
**Step 1:** Add 4 to both sides:
\[
3x = 12
\]
**Step 2:** Divide by 3:
\[
x = 4
\]
**Check:** Substitute \( x = 4 \) back into the original equation:
\[
3(4) - 4 = 12 - 4 = 8 \quad \text{(True)}
\]
**Solution:** \( x = 4 \)
---
### 2. Solve \( -5(x-2) + 4x = x(3-x) - 4(x-2) + x^2 + 2 \)
**Step 1:** Expand both sides:
\[
-5x + 10 + 4x = 3x - x^2 - 4x + 8 + x^2 + 2
\]
**Step 2:** Combine like terms:
\[
-x + 10 = -x + 10
\]
This is true for all \( x \).
**Check:** All real numbers satisfy the equation.
**Solution:** \( x \in \mathbb{R} \) (All real solutions)
---
### 3. Solve \( 3(2x - 1) + 4 = 3 - 5(1 - x) \)
**Step 1:** Expand both sides:
\[
6x - 3 + 4 = 3 - 5 + 5x
\]
**Step 2:** Simplify:
\[
6x + 1 = -2 + 5x
\]
**Step 3:** Rearrange:
\[
6x - 5x = -2 - 1
\]
\[
x = -3
\]
**Check:** Substitute \( x = -3 \):
\[
3(2(-3) - 1) + 4 = 3 - 5(1 - (-3))
\]
\[
3(-6 - 1) + 4 = 3 - 5(4)
\]
\[
-21 + 4 = 3 - 20
\]
\[
-17 = -17 \quad \text{(True)}
\]
**Solution:** \( x = -3 \)
---
### 4. Solve \( 2(x - 3) + 5 = 7 - 2(1 - x) \)
**Step 1:** Expand both sides:
\[
2x - 6 + 5 = 7 - 2 + 2x
\]
**Step 2:** Simplify:
\[
2x - 1 = 5 + 2x
\]
**Step 3:** Rearrange:
\[
-1 = 5 \quad \text{(False)}
\]
**Check:** No solutions exist.
**Solution:** \( x \in \varnothing \) (No solution)
---
### 5. Solve \( x - (x - 2) - 2(x - 3) = 0 \)
**Step 1:** Expand:
\[
x - x + 2 - 2x + 6 = 0
\]
**Step 2:** Combine like terms:
\[
-2x + 8 = 0
\]
**Step 3:** Solve for \( x \):
\[
2x = 8 \quad \Rightarrow \quad x = 4
\]
**Check:** Substitute \( x = 4 \):
\[
4 - (4 - 2) - 2(4 - 3) = 0
\]
\[
4 - 2 - 2 = 0 \quad \text{(True)}
\]
**Solution:** \( x = 4 \)
---
### 6. Solve \( x(2 - 3x) + (x + 2)(3x - 2) = 0 \)
**Step 1:** Expand:
\[
2x - 3x^2 + 3x^2 + 6x - 2 = 0
\]
**Step 2:** Combine like terms:
\[
8x - 2 = 0
\]
**Step 3:** Solve for \( x \):
\[
8x = 2 \quad \Rightarrow \quad x = \frac{1}{4}
\]
**Check:** Substitute \( x = \frac{1}{4} \):
\[
\frac{1}{4}(2 - 3(\frac{1}{4})) + (\frac{1}{4} + 2)(3(\frac{1}{4}) - 2) = 0
\]
\[
\frac{1}{4}(2 - \frac{3}{4}) + (\frac{1}{4} + 2)(\frac{3}{4} - 2) = 0
\]
\[
\frac{1}{4}(\frac{5}{4}) + (\frac{9}{4})(-\frac{5}{4}) = 0
\]
\[
\frac{5}{16} - \frac{45}{16} = 0 \quad \text{(True)}
\]
**Solution:** \( x = \frac{1}{4} \)
---
### 7. Solve \( -2 + (x - 1)(x + 2) = x(x - 3) + 4(x - 1) \)
**Step 1:** Expand:
\[
-2 + (x^2 + x - 2) = x^2 - 3x + 4x - 4
\]
**Step 2:** Combine like terms:
\[
x^2 + x - 2 - 2 = x^2 + x - 4
\]
**Step 3:** Rearrange:
\[
-4 = -4 \quad \text{(True)}
\]
**Check:** All real numbers satisfy the equation.
**Solution:** \( x \in \mathbb{R} \) (All real solutions)
---
### 8. Solve \( (x - 3)(x + 2) = x(x + 1) - 3(x + 2) + 3 \)
**Step 1:** Expand:
\[
x^2 - x - 6 = x^2 + x - 3x - 6 + 3
\]
**Step 2:** Combine like terms:
\[
x^2 - x - 6 = x^2 - 2x - 3
\]
**Step 3:** Rearrange:
\[
-x + 2x - 6 + 3 = 0
\]
\[
x - 3 = 0 \quad \Rightarrow \quad x = 3
\]
**Check:** Substitute \( x = 3 \):
\[
(3 - 3)(3 + 2) = 3(3 + 1) - 3(
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución