Rewrite the expressions that follow as the sine or cosine of a single angle and evaluate where possible without a calculator. \( 2.1 \sin 68^{\circ} \cos 22^{\circ}+\cos 68^{\circ} \sin 22^{\circ} \) \( 2.2 \cos 28^{\circ} \cos 2^{\circ}-\sin 28^{\circ} \sin 2^{\circ} \) \( 2.3 \cos 108^{\circ} \cos 188^{\circ}+\sin 252^{\circ} \sin 172^{\circ} \) \( 2.4 \sin 70^{\circ} \cos 10^{\circ}-\cos 80^{\circ} \cos 70^{\circ} \) \( -\sin 4 x \sin 3 x+\cos 4 x \cos 3 x \) \( 2.6 \sin \left(90^{\circ}-x\right) \cos x+\cos \left(90^{\circ}+x\right) \sin x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Sure! Here are the rewritten expressions: **2.1** We can use the sine addition formula: \( 2.1 \sin 68^{\circ} \cos 22^{\circ}+\cos 68^{\circ} \sin 22^{\circ} = \sin(68^{\circ} + 22^{\circ}) = \sin 90^{\circ} = 1 \) **2.2** We utilize the cosine subtraction formula: \( 2.2 \cos 28^{\circ} \cos 2^{\circ}-\sin 28^{\circ} \sin 2^{\circ} = \cos(28^{\circ} + 2^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) **2.3** For this expression, we can use the cosine addition formula: \( 2.3 \cos 108^{\circ} \cos 188^{\circ}+\sin 252^{\circ} \sin 172^{\circ} = \cos(108^{\circ} - 188^{\circ}) = \cos(-80^{\circ}) = \cos 80^{\circ} = \sin 10^{\circ} \) **2.4** Now we apply the sine and cosine subtraction formulas: \( 2.4 \sin 70^{\circ} \cos 10^{\circ}-\cos 80^{\circ} \cos 70^{\circ} = \sin(70^{\circ} - 10^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) **2.5** This simplifies using the cosine addition formula: \( -\sin 4 x \sin 3 x+\cos 4 x \cos 3 x = \cos(4x - 3x) = \cos x \) **2.6** We can transform using known identities: \( 2.6 \sin \left(90^{\circ}-x\right) \cos x+\cos \left(90^{\circ}+x\right) \sin x = \cos x \cos x - (-\sin x \sin x) = \cos^2 x + \sin^2 x = 1 \)
