Pregunta
upstudy study bank question image url

Rewrite the expressions that follow as the sine or cosine of a single angle and evaluate where possible without a calculator. \( 2.1 \sin 68^{\circ} \cos 22^{\circ}+\cos 68^{\circ} \sin 22^{\circ} \) \( 2.2 \cos 28^{\circ} \cos 2^{\circ}-\sin 28^{\circ} \sin 2^{\circ} \) \( 2.3 \cos 108^{\circ} \cos 188^{\circ}+\sin 252^{\circ} \sin 172^{\circ} \) \( 2.4 \sin 70^{\circ} \cos 10^{\circ}-\cos 80^{\circ} \cos 70^{\circ} \) \( -\sin 4 x \sin 3 x+\cos 4 x \cos 3 x \) \( 2.6 \sin \left(90^{\circ}-x\right) \cos x+\cos \left(90^{\circ}+x\right) \sin x \)

Ask by Lyons Salinas. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. \( 2.1 = 2 \) 2. \( 2.2 = \frac{\sqrt{3}}{2} \) 3. \( 2.3 = \sin(10^{\circ}) \) 4. \( 2.4 = \frac{\sqrt{3}}{2} \) 5. \( 2.5 = \cos(x) \) 6. \( 2.6 = \cos(2x) \)

Solución

To rewrite the given expressions as the sine or cosine of a single angle, we can use the angle addition and subtraction formulas. Let's go through each expression step by step. ### Expression 2.1 \[ 2.1 \quad 2 \sin 68^{\circ} \cos 22^{\circ} + \cos 68^{\circ} \sin 22^{\circ} \] Using the angle addition formula for sine: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] we can rewrite the expression as: \[ 2 \sin(68^{\circ} + 22^{\circ}) = 2 \sin(90^{\circ}) = 2 \] ### Expression 2.2 \[ 2.2 \quad \cos 28^{\circ} \cos 2^{\circ} - \sin 28^{\circ} \sin 2^{\circ} \] Using the angle subtraction formula for cosine: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] we can rewrite the expression as: \[ \cos(28^{\circ} + 2^{\circ}) = \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \] ### Expression 2.3 \[ 2.3 \quad \cos 108^{\circ} \cos 188^{\circ} + \sin 252^{\circ} \sin 172^{\circ} \] Using the angle addition formula for cosine: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] we can rewrite the expression as: \[ \cos(108^{\circ} - 188^{\circ}) = \cos(-80^{\circ}) = \cos(80^{\circ}) = \sin(10^{\circ}) \] ### Expression 2.4 \[ 2.4 \quad \sin 70^{\circ} \cos 10^{\circ} - \cos 80^{\circ} \cos 70^{\circ} \] Using the sine subtraction formula: \[ \sin(a) \cos(b) - \cos(a) \cos(b) = \sin(a - b) \] we can rewrite the expression as: \[ \sin(70^{\circ} - 10^{\circ}) = \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \] ### Expression 2.5 \[ 2.5 \quad -\sin 4x \sin 3x + \cos 4x \cos 3x \] Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] we can rewrite the expression as: \[ \cos(4x - 3x) = \cos(x) \] ### Expression 2.6 \[ 2.6 \quad \sin(90^{\circ} - x) \cos x + \cos(90^{\circ} + x) \sin x \] Using the sine and cosine identities: \[ \sin(90^{\circ} - x) = \cos x \quad \text{and} \quad \cos(90^{\circ} + x) = -\sin x \] we can rewrite the expression as: \[ \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x = \cos(2x) \] ### Summary of Results 1. \( 2.1 = 2 \) 2. \( 2.2 = \frac{\sqrt{3}}{2} \) 3. \( 2.3 = \sin(10^{\circ}) \) 4. \( 2.4 = \frac{\sqrt{3}}{2} \) 5. \( 2.5 = \cos(x) \) 6. \( 2.6 = \cos(2x) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure! Here are the rewritten expressions: **2.1** We can use the sine addition formula: \( 2.1 \sin 68^{\circ} \cos 22^{\circ}+\cos 68^{\circ} \sin 22^{\circ} = \sin(68^{\circ} + 22^{\circ}) = \sin 90^{\circ} = 1 \) **2.2** We utilize the cosine subtraction formula: \( 2.2 \cos 28^{\circ} \cos 2^{\circ}-\sin 28^{\circ} \sin 2^{\circ} = \cos(28^{\circ} + 2^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2} \) **2.3** For this expression, we can use the cosine addition formula: \( 2.3 \cos 108^{\circ} \cos 188^{\circ}+\sin 252^{\circ} \sin 172^{\circ} = \cos(108^{\circ} - 188^{\circ}) = \cos(-80^{\circ}) = \cos 80^{\circ} = \sin 10^{\circ} \) **2.4** Now we apply the sine and cosine subtraction formulas: \( 2.4 \sin 70^{\circ} \cos 10^{\circ}-\cos 80^{\circ} \cos 70^{\circ} = \sin(70^{\circ} - 10^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) **2.5** This simplifies using the cosine addition formula: \( -\sin 4 x \sin 3 x+\cos 4 x \cos 3 x = \cos(4x - 3x) = \cos x \) **2.6** We can transform using known identities: \( 2.6 \sin \left(90^{\circ}-x\right) \cos x+\cos \left(90^{\circ}+x\right) \sin x = \cos x \cos x - (-\sin x \sin x) = \cos^2 x + \sin^2 x = 1 \)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad