Which of the following is equal to \( \left[\frac{\left(x^{2} y^{3}\right)^{-2}}{\left(x^{6} y^{3} z\right)^{2}}\right]^{3} ? \) \( \frac{\left(x^{2} y^{3}\right)^{-6}}{\left(x^{6} y^{3} z\right)^{6}} \) \( \square \frac{1}{x^{48} y^{38} z^{6}} \) \( \square \frac{\left(x^{2} y^{3}\right)}{\left(x^{6} y^{3} z\right)^{5}} \) \( \square \frac{x^{-12} y^{-18}}{} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To tackle the expression \( \left[\frac{\left(x^{2} y^{3}\right)^{-2}}{\left(x^{6} y^{3} z\right)^{2}}\right]^{3} \), let's break it down. First, simplify inside the brackets: \[ \left(x^{2} y^{3}\right)^{-2} = x^{-4} y^{-6} \] and \[ \left(x^{6} y^{3} z\right)^{2} = x^{12} y^{6} z^{2}. \] So, \[ \frac{\left(x^{2} y^{3}\right)^{-2}}{\left(x^{6} y^{3} z\right)^{2}} = \frac{x^{-4} y^{-6}}{x^{12} y^{6} z^{2}} = x^{-4-12} y^{-6-6} z^{-2} = x^{-16} y^{-12} z^{-2}. \] Now, raise this to the power of 3: \[ \left( x^{-16} y^{-12} z^{-2} \right)^{3} = x^{-48} y^{-36} z^{-6}. \] So, we find \( \left[\frac{\left(x^{2} y^{3}\right)^{-2}}{\left(x^{6} y^{3} z\right)^{2}}\right]^{3} = \frac{1}{x^{48} y^{36} z^{6}} \). A fun fact about exponents: they follow specific rules — for instance, multiplying two powers with the same base means you add their exponents, while dividing them means you subtract. Knowing these rules can turn exponent problems from daunting to delightful! If you're ever in a bind while simplifying expressions, double-check each step carefully. Common mistakes often stem from mishandling negative exponents or overlooking parentheses. Remember, \( a^{-n} = \frac{1}{a^n} \) can save you from a lot of confusion!
