Pregunta
upstudy study bank question image url

The Hope club had a fundraising raffle where they sold 3865 tickets for \( \$ 3 \) each. There was one first place prize worth \( \$ 955 \) and 4 second place prizes each worth \( \$ 10 \). The expected value can be computed by: \( E V=\frac{955+(10)(4)+(-3)(3865-1-4)}{3865} \) Find this expected value rounded to two decimal places (the nearest cent).

Ask by Dickson Deleon. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expected value is approximately -2.74 cents.

Solución

Calculate or simplify the expression \( \frac{955+(10)(4)+(-3)(3865-1-4)}{3865} \). Calculate the value by following steps: - step0: Calculate: \(\frac{955+10\times 4+\left(-3\right)\left(3865-1-4\right)}{3865}\) - step1: Remove the parentheses: \(\frac{955+10\times 4-3\left(3865-1-4\right)}{3865}\) - step2: Subtract the numbers: \(\frac{955+10\times 4-3\times 3860}{3865}\) - step3: Multiply the numbers: \(\frac{955+40-3\times 3860}{3865}\) - step4: Multiply the numbers: \(\frac{955+40-11580}{3865}\) - step5: Calculate: \(\frac{-10585}{3865}\) - step6: Reduce the fraction: \(\frac{-2117}{773}\) - step7: Rewrite the fraction: \(-\frac{2117}{773}\) The expected value of the fundraising raffle is approximately -2.74 cents when rounded to two decimal places.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the expected value (EV), we first need to understand the components. The total prizes amount to \( \$ 955 + (4 \times \$ 10) = \$ 955 + \$ 40 = \$ 995 \). Now, let's address the losses. The total number of tickets sold is 3865, and each ticket costs \( \$ 3 \), so the total revenue from tickets sold is \( 3 \times 3865 = \$ 11,595 \). The expected value formula provided can be calculated as follows: \[ EV = \frac{995 + (-3)(3865 - 1 - 4)}{3865} \] This simplifies to: \[ EV = \frac{995 - 3(3860)}{3865} \] \[ = \frac{995 - 11580}{3865} = \frac{-10585}{3865} \approx -2.74 \] Rounded to two decimal places, the expected value is approximately \( -2.74 \). This negative value suggests that on average, participants lose \( \$ 2.74 \) for every ticket purchased.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad