Find the GCF (greatest common factor) of the following terms. \( \{27 x y, 81,54 x y\} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the GCF of the terms \( \{27xy, 81, 54xy\} \), we first determine the GCF of the coefficients. The coefficients are 27, 81, and 54. Breaking these down: - 27 = \(3^3\) - 81 = \(3^4\) - 54 = \(2 \cdot 3^3\) The GCF of the coefficients is the smallest power of each prime factor common to all terms. Here, the lowest power of 3 is \(3^3 = 27\). Now, since \(27xy\) and \(54xy\) both contain \(xy\), but 81 does not have these variables, we can only take them from the terms that do. Thus, the GCF including variables is \(27\), since it is common only in the terms with \(xy\). Therefore, the GCF of the terms \( \{27xy, 81, 54xy\} \) is \(27\).
