2. Simplify the expression shown below: \( 6 \sqrt{10} \cdot \sqrt{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Did you know that the square root of a product can be simplified using the rule \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \)? So in this case, \( 6 \sqrt{10} \cdot \sqrt{2} \) transforms into \( 6 \sqrt{10 \cdot 2} = 6 \sqrt{20} \). And since \( \sqrt{20} \) can further be simplified to \( \sqrt{4 \cdot 5} = 2 \sqrt{5} \), the final answer becomes \( 12 \sqrt{5} \). When simplifying expressions like this, it’s common to overlook simplifying the square root itself. A tip to remember is to always look for perfect squares when simplifying roots, as they can reduce the complexity and lead to a cleaner final answer. In this case, recognizing that \( 20 \) contains a \( 4 \) made a huge difference!
