Use the unit circle to find the value of each trigonometric function at the angle indicated. \[ \begin{array}{l} \cos \left(270^{\circ}\right)=\square \\ \sin \left(270^{\circ}\right)=\square \\ \tan \left(270^{\circ}\right)=\square \\ \cos \left(0^{\circ}\right)= \\ \sin \left(0^{\circ}\right)= \\ \tan \left(0^{\circ}\right)= \\ \text { DONE }= \\ \text { (i) Intr } \\ \text { undefined } \end{array} \] \( \square \) \( \square \) \( \square \) \( \square \) \( \square \) \( \square \) \( \square \) \( \square \) 7 of 12
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
At \(270^{\circ}\), which is located at the bottom of the unit circle, the coordinates are \( (0, -1) \). Hence, we have: \[ \cos(270^{\circ}) = 0, \quad \sin(270^{\circ}) = -1, \quad \tan(270^{\circ}) = \text{undefined} \] For \(0^{\circ}\), the angle is at the rightmost point of the unit circle, where the coordinates are \( (1, 0) \): \[ \cos(0^{\circ}) = 1, \quad \sin(0^{\circ}) = 0, \quad \tan(0^{\circ}) = 0 \] So, the completed values are: \[ \begin{array}{l} \cos(270^{\circ}) = 0 \\ \sin(270^{\circ}) = -1 \\ \tan(270^{\circ}) = \text{undefined} \\ \cos(0^{\circ}) = 1 \\ \sin(0^{\circ}) = 0 \\ \tan(0^{\circ}) = 0 \\ \text{DONE} = 0 \\ \text{(i) Intr} \\ \text{undefined} \end{array} \]
