Pregunta
upstudy study bank question image url

\( a^{2}+2 a q+q^{2}-16 \) \( a^{2}+2 a q+q^{2}-16=\square \) (Factor completely.)

Ask by Martin Griffin. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( (a + q - 4)(a + q + 4) \)

Solución

We start with the expression:   a² + 2aq + q² - 16 Notice that the first three terms form a perfect square:   a² + 2aq + q² = (a + q)² So the expression becomes:   (a + q)² - 16 Recognize that 16 is a perfect square (4²). Thus, the expression is a difference of squares:   (a + q)² - 4² The difference of squares can be factored as:   (a + q - 4)(a + q + 4) Thus, the completely factored form is:   (a + q - 4)(a + q + 4)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To factor the expression \( a^{2}+2aq+q^{2}-16 \), observe that the first three terms form a perfect square trinomial. We can rewrite it as: \( (a + q)^2 - 16 \). Recognizing that \( 16 \) is \( 4^2 \), we can apply the difference of squares formula: \( (x^2 - y^2) = (x - y)(x + y) \). In our case, it's \( (a + q)^2 - 4^2 \): \[ ((a + q) - 4)((a + q) + 4) = (a + q - 4)(a + q + 4). \] Thus, the expression factors completely to: \[ (a + q - 4)(a + q + 4). \] Here's something fun: Did you know that the concept of factoring polynomials has roots that stretch back to ancient civilizations? Babylonian mathematicians were already working with quadratic equations over 3,000 years ago! They would use geometrical methods to solve problems that we now solve with algebra, showing that the love for numbers and shapes is timeless! For applying this knowledge, factoring is handy in various fields like engineering, physics, and economics. Understanding how to manipulate equations allows engineers to determine dimensions when designing structures, and economists can model financial trends or optimize profits. Factoring helps simplify problems, making them easier to solve and understand in the real world!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad