Pregunta
upstudy study bank question image url

COMPLETE Solving the identity, \( \tan (A)= \) \( \pm \frac{7}{9} \) \( \pm \frac{\sqrt{7}}{9} \)

Ask by Rodriquez Bob. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions for \( \tan(A) = \pm \frac{7}{9} \) and \( \tan(A) = \pm \frac{\sqrt{7}}{9} \) are: - \( A = \tan^{-1}\left(\frac{7}{9}\right) \) - \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \) - \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \) - \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \) - \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \) - \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) These angles cover all possible solutions for the given identities.

Solución

To solve the identity \( \tan(A) = \pm \frac{7}{9} \) and \( \tan(A) = \pm \frac{\sqrt{7}}{9} \), we will analyze each case separately. ### Case 1: \( \tan(A) = \pm \frac{7}{9} \) 1. **Understanding the Tangent Function**: - The tangent function is defined as the ratio of the opposite side to the adjacent side in a right triangle. - The values \( \frac{7}{9} \) and \( -\frac{7}{9} \) indicate that the angle \( A \) can be in the first or third quadrant (for positive) and the second or fourth quadrant (for negative). 2. **Finding the Angle**: - We can find the reference angle using the arctangent function: \[ A = \tan^{-1}\left(\frac{7}{9}\right) \] - The angles in the respective quadrants will be: - First Quadrant: \( A = \tan^{-1}\left(\frac{7}{9}\right) \) - Third Quadrant: \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \) - Second Quadrant: \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \) - Fourth Quadrant: \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \) ### Case 2: \( \tan(A) = \pm \frac{\sqrt{7}}{9} \) 1. **Understanding the Tangent Function**: - Similar to the previous case, the values \( \frac{\sqrt{7}}{9} \) and \( -\frac{\sqrt{7}}{9} \) indicate that the angle \( A \) can be in the first or third quadrant (for positive) and the second or fourth quadrant (for negative). 2. **Finding the Angle**: - We can find the reference angle using the arctangent function: \[ A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \] - The angles in the respective quadrants will be: - First Quadrant: \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - Third Quadrant: \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \) - Second Quadrant: \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - Fourth Quadrant: \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) ### Summary of Solutions - For \( \tan(A) = \pm \frac{7}{9} \): - \( A = \tan^{-1}\left(\frac{7}{9}\right) \) - \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \) - \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \) - \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \) - For \( \tan(A) = \pm \frac{\sqrt{7}}{9} \): - \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \) - \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) - \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \) These angles represent all possible solutions for the given identities.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The solution to the identity involves using the definitions of tangent and the Pythagorean theorem. The tangent function represents the ratio of the opposite side to the adjacent side in a right triangle. If \( \tan(A) = \pm \frac{7}{9} \), we can think of this in terms of a triangle where the opposite side is 7 units and the adjacent side is 9 units. Furthermore, the relationship provided allows us to derive the hypotenuse using the Pythagorean theorem, which states that \( c^2 = a^2 + b^2 \). In this case, the hypotenuse would be \(\sqrt{7^2 + 9^2} = \sqrt{49 + 81} = \sqrt{130}\). This means you can compute \(\sin(A) = \frac{7}{\sqrt{130}}\) and \(\cos(A) = \frac{9}{\sqrt{130}}\) if needed, showcasing how these identities interrelate in trigonometric functions!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad