Responder
The solutions for \( \tan(A) = \pm \frac{7}{9} \) and \( \tan(A) = \pm \frac{\sqrt{7}}{9} \) are:
- \( A = \tan^{-1}\left(\frac{7}{9}\right) \)
- \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \)
- \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \)
- \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \)
- \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \)
- \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
These angles cover all possible solutions for the given identities.
Solución
To solve the identity \( \tan(A) = \pm \frac{7}{9} \) and \( \tan(A) = \pm \frac{\sqrt{7}}{9} \), we will analyze each case separately.
### Case 1: \( \tan(A) = \pm \frac{7}{9} \)
1. **Understanding the Tangent Function**:
- The tangent function is defined as the ratio of the opposite side to the adjacent side in a right triangle.
- The values \( \frac{7}{9} \) and \( -\frac{7}{9} \) indicate that the angle \( A \) can be in the first or third quadrant (for positive) and the second or fourth quadrant (for negative).
2. **Finding the Angle**:
- We can find the reference angle using the arctangent function:
\[
A = \tan^{-1}\left(\frac{7}{9}\right)
\]
- The angles in the respective quadrants will be:
- First Quadrant: \( A = \tan^{-1}\left(\frac{7}{9}\right) \)
- Third Quadrant: \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \)
- Second Quadrant: \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \)
- Fourth Quadrant: \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \)
### Case 2: \( \tan(A) = \pm \frac{\sqrt{7}}{9} \)
1. **Understanding the Tangent Function**:
- Similar to the previous case, the values \( \frac{\sqrt{7}}{9} \) and \( -\frac{\sqrt{7}}{9} \) indicate that the angle \( A \) can be in the first or third quadrant (for positive) and the second or fourth quadrant (for negative).
2. **Finding the Angle**:
- We can find the reference angle using the arctangent function:
\[
A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right)
\]
- The angles in the respective quadrants will be:
- First Quadrant: \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- Third Quadrant: \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \)
- Second Quadrant: \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- Fourth Quadrant: \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
### Summary of Solutions
- For \( \tan(A) = \pm \frac{7}{9} \):
- \( A = \tan^{-1}\left(\frac{7}{9}\right) \)
- \( A = \tan^{-1}\left(\frac{7}{9}\right) + \pi \)
- \( A = \pi - \tan^{-1}\left(\frac{7}{9}\right) \)
- \( A = 2\pi - \tan^{-1}\left(\frac{7}{9}\right) \)
- For \( \tan(A) = \pm \frac{\sqrt{7}}{9} \):
- \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- \( A = \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) + \pi \)
- \( A = \pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
- \( A = 2\pi - \tan^{-1}\left(\frac{\sqrt{7}}{9}\right) \)
These angles represent all possible solutions for the given identities.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución