Use the equation \( f(x)=x^{2}+4 x-7 \), to answer parts a) through \( g \) ). The parabola opens upward. b) Find the equation of the axis of symmetry. The axis of symmetry is \( x=-2 \). (Type an equation.) c) Find the vertex. The vertex of the parabola \( f(x)=x^{2}+4 x-7 \) is \( (-2,-11) \). (Type an ordered pair.) d) Find the \( y \)-intercept. The \( y \)-intercept of \( f(x)=x^{2}+4 x-7 \) is \( (0,-7) \). (Type an ordered pair.) e) Find the \( x \)-intercepts. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The \( x \)-intercept(s) is/are (Round to two decimal plates as needed. Type an ordered pair. Use a comma to senarate answers as needed. Tvoe each answer onlv once.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the \( x \)-intercepts of the equation \( f(x)=x^{2}+4 x-7 \), we need to set \( f(x) = 0 \). This leads us to solve the quadratic equation: \[ x^2 + 4x - 7 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \), where \( a = 1 \), \( b = 4 \), and \( c = -7 \): \[ x = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-7)}}{2(1)} = \frac{-4 \pm \sqrt{16 + 28}}{2} = \frac{-4 \pm \sqrt{44}}{2} \] Simplifying \(\sqrt{44}\) gives us \(2\sqrt{11}\): \[ x = \frac{-4 \pm 2\sqrt{11}}{2} = -2 \pm \sqrt{11} \] Thus, the \( x \)-intercepts are: \[ (-2-\sqrt{11}, 0) \quad \text{and} \quad (-2+\sqrt{11}, 0) \] Rounded to two decimal places, these intercepts are approximately: \[ (-5.32, 0), \quad (1.32, 0) \] So, in your choice format: A. The \( x \)-intercept(s) is/are \((-5.32, 0), (1.32, 0)\)
