Pregunta
upstudy study bank question image url

Use the equation \( f(x)=x^{2}+4 x-7 \), to answer parts a) through \( g \) ). The parabola opens upward. b) Find the equation of the axis of symmetry. The axis of symmetry is \( x=-2 \). (Type an equation.) c) Find the vertex. The vertex of the parabola \( f(x)=x^{2}+4 x-7 \) is \( (-2,-11) \). (Type an ordered pair.) d) Find the \( y \)-intercept. The \( y \)-intercept of \( f(x)=x^{2}+4 x-7 \) is \( (0,-7) \). (Type an ordered pair.) e) Find the \( x \)-intercepts. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The \( x \)-intercept(s) is/are (Round to two decimal plates as needed. Type an ordered pair. Use a comma to senarate answers as needed. Tvoe each answer onlv once.)

Ask by Rowe Gibbs. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The x-intercepts are (1.32, 0) and (–5.32, 0).

Solución

We start with the quadratic equation:   f(x) = x² + 4x – 7 To find the x-intercepts, we solve f(x) = 0:   x² + 4x – 7 = 0 Using the quadratic formula   x = [–b ± √(b² – 4ac)] / (2a)   with a = 1, b = 4, and c = –7, we have:   x = [–4 ± √(4² – 4(1)(–7)] / (2·1)   x = [–4 ± √(16 + 28)] / 2   x = [–4 ± √44] / 2 Since √44 = 2√11, it simplifies to:   x = (–4 ± 2√11) / 2   x = –2 ± √11 Thus, the x-intercepts are:   (–2 + √11, 0)  and  (–2 – √11, 0) Now rounding these to two decimal places:   √11 ≈ 3.32 So,   –2 + 3.32 ≈ 1.32  and  –2 – 3.32 ≈ –5.32 Thus, the x-intercepts approximately are:   (1.32, 0)  and  (–5.32, 0) Answer Choice A: The x-intercept(s) is/are (1.32, 0), (–5.32, 0).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the \( x \)-intercepts of the equation \( f(x)=x^{2}+4 x-7 \), we need to set \( f(x) = 0 \). This leads us to solve the quadratic equation: \[ x^2 + 4x - 7 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \), where \( a = 1 \), \( b = 4 \), and \( c = -7 \): \[ x = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-7)}}{2(1)} = \frac{-4 \pm \sqrt{16 + 28}}{2} = \frac{-4 \pm \sqrt{44}}{2} \] Simplifying \(\sqrt{44}\) gives us \(2\sqrt{11}\): \[ x = \frac{-4 \pm 2\sqrt{11}}{2} = -2 \pm \sqrt{11} \] Thus, the \( x \)-intercepts are: \[ (-2-\sqrt{11}, 0) \quad \text{and} \quad (-2+\sqrt{11}, 0) \] Rounded to two decimal places, these intercepts are approximately: \[ (-5.32, 0), \quad (1.32, 0) \] So, in your choice format: A. The \( x \)-intercept(s) is/are \((-5.32, 0), (1.32, 0)\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad