Pregunta
Use both the addition and multiplication properties of inequality to solve the inequality and graph the set on a number line. \( -4 x-22>10 \) The solution set is \( \square \). (Type your answer in interval notation.)
Ask by Gibbs Patel. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution set is \( x < -8 \), which in interval notation is \( (-\infty, -8) \).
Solución
Solve the equation \( -4x-22>10 \).
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(-4x-22>10\)
- step1: Move the constant to the right side:
\(-4x>10+22\)
- step2: Add the numbers:
\(-4x>32\)
- step3: Change the signs:
\(4x<-32\)
- step4: Divide both sides:
\(\frac{4x}{4}<\frac{-32}{4}\)
- step5: Divide the numbers:
\(x<-8\)
The solution to the inequality \( -4x-22>10 \) is \( x<-8 \).
To graph the solution set on a number line, we need to shade the region to the left of -8.
The solution set in interval notation is \( (-\infty, -8) \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the inequality \( -4x - 22 > 10 \), we first isolate \( x \) using the addition property of inequality. Adding 22 to both sides gives us: \[ -4x > 32 \] Next, we apply the multiplication property of inequality. Since we are multiplying by a negative number (-4), we must reverse the inequality sign when dividing by -4: \[ x < -8 \] The solution set is \( (-\infty, -8) \). Now, when graphing this on a number line, draw an open circle at -8 and shade everything to the left to represent that \( x \) can take any value less than -8.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium