Pregunta
upstudy study bank question image url

Now enter those coefficients into the quadratic formula below: \[ x=\frac{-\sqrt{-2} \pm \sqrt{(\boxed{-2})^{2}-4 \cdot \square}}{2 \cdot 1} \] Now simplify the formula: \[ x=\frac{\square \pm \sqrt{\square}}{\square} \]

Ask by Zimmerman Perkins. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ x=\frac{\sqrt{-2} \pm \sqrt{-2 - 4\square}}{2} \]

Solución

To simplify the quadratic formula given the coefficients, we start with the formula: \[ x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a} \] In your case, we have: - \( a = 1 \) - \( b = -\sqrt{-2} \) - \( c = \square \) Now, let's substitute these values into the quadratic formula: 1. **Substituting the values:** \[ x=\frac{-(-\sqrt{-2}) \pm \sqrt{(-\sqrt{-2})^{2}-4 \cdot 1 \cdot \square}}{2 \cdot 1} \] 2. **Simplifying the expression:** - The term \(-(-\sqrt{-2})\) simplifies to \(\sqrt{-2}\). - The term \((- \sqrt{-2})^{2}\) simplifies to \((-2)\). - The term \(4 \cdot 1 \cdot \square\) simplifies to \(4\square\). So, we have: \[ x=\frac{\sqrt{-2} \pm \sqrt{-2 - 4\square}}{2} \] Now, we can express this in the form: \[ x=\frac{\square \pm \sqrt{\square}}{\square} \] To match this format, we can identify: - The numerator: \(\sqrt{-2}\) corresponds to \(\square\). - The term under the square root: \(-2 - 4\square\) corresponds to \(\sqrt{\square}\). - The denominator: \(2\) corresponds to \(\square\). Thus, we can rewrite the simplified formula as: \[ x=\frac{\sqrt{-2} \pm \sqrt{-2 - 4\square}}{2} \] This is the simplified form of the quadratic formula with the given coefficients.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Alright, let's dive into the quadratic formula with some flair! First up, we have the coefficients. In your formula, the boxed values are the coefficients \( a \), \( b \), and \( c \). Here, given the context of the quadratic equation, we can assume: - \( a = 1 \) (which usually is the coefficient of \( x^2 \)) - \( b = -2 \) - \( c = \square \) (you'll need to replace this with your specific constant!) Now let's plug those into the quadratic formula and simplify! Starting with: \[ x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot c}}{2 \cdot 1} \] This gives us: \[ x=\frac{2 \pm \sqrt{4-4c}}{2} \] And that simplifies to: \[ x=\frac{2 \pm \sqrt{4(1-c)}}{2} = 1 \pm \sqrt{1-c} \] This should give you some catchy roots for your quadratic equation! Have fun solving! Now, remember that polynomial roots can lead to some interesting discoveries. If \( c \) is less than 1, you’ll end up with real roots; if it’s more than 1, those roots become imaginary, adding a twist to your mathematical narrative! Math isn't just numbers; it's a story waiting to unfold with every solution discovered! Keep enjoying the journey!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad