Question Determine whether the function \( f(x)=-6 x^{7}-x^{5} \) is even, odd or neither. Answer odd even Examples neither
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To determine the nature of the function \( f(x) = -6x^7 - x^5 \), we can evaluate \( f(-x) \). If \( f(-x) = f(x) \), the function is even. If \( f(-x) = -f(x) \), then it is odd. Plugging in \( -x \) gives \( f(-x) = -6(-x)^7 - (-x)^5 = 6x^7 + x^5 \). Since \( f(-x) = -f(x) \), the function is odd. Another fun way to visualize odd functions is to think of them as having rotational symmetry about the origin. This means that if you take any point \( (x, f(x)) \) on the graph, the point \( (-x, -f(x)) \) will also be on the graph. So, for our function, if you plot points, you’ll see that they just flip as you cross through the origin—like a fun game of leapfrog!
