Pregunta
upstudy study bank question image url

Answer 4 b. \( n=25 \) scores Answer 4 22. For a population with \( \sigma=16 \), how large a sample is necessary to have a standard error that is a. equal to 8 points? b. equal to 4 points? Success Tips c. equal to 2 points? 23. If the poputation standard deviation is \( \sigma=24 \), how large a sample is necessary to have a standard error that is SIEN OUT a. equal to 6 points? Arsuar 9 b. equal to 3 points?

Ask by Flynn Daniels. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine the necessary sample size for a given standard error (SE), use the formula: \[ n = \left(\frac{\sigma}{SE}\right)^2 \] **Problem 22:** - Given \( \sigma = 16 \) - a. For \( SE = 8 \): \( n = 4 \) - b. For \( SE = 4 \): \( n = 16 \) - c. For \( SE = 2 \): \( n = 64 \) **Problem 23:** - Given \( \sigma = 24 \) - a. For \( SE = 6 \): \( n = 16 \) - b. For \( SE = 3 \): \( n = 64 \) So, the required sample sizes are: - 4, 16, 64 for Problem 22 - 16, 64 for Problem 23

Solución

To solve the problem, we need to use the formula for the standard error (SE) of the mean, which is given by: \[ SE = \frac{\sigma}{\sqrt{n}} \] where: - \( SE \) is the standard error, - \( \sigma \) is the population standard deviation, - \( n \) is the sample size. We can rearrange this formula to solve for \( n \): \[ n = \left(\frac{\sigma}{SE}\right)^2 \] Now, let's solve each part step by step. ### Problem 22 Given \( \sigma = 16 \): #### a. For \( SE = 8 \): \[ n = \left(\frac{16}{8}\right)^2 \] #### b. For \( SE = 4 \): \[ n = \left(\frac{16}{4}\right)^2 \] #### c. For \( SE = 2 \): \[ n = \left(\frac{16}{2}\right)^2 \] ### Problem 23 Given \( \sigma = 24 \): #### a. For \( SE = 6 \): \[ n = \left(\frac{24}{6}\right)^2 \] #### b. For \( SE = 3 \): \[ n = \left(\frac{24}{3}\right)^2 \] Now, let's calculate the values for \( n \) for each case. Calculate the value by following steps: - step0: Calculate: \(\left(\frac{16}{8}\right)^{2}\) - step1: Divide the terms: \(2^{2}\) - step2: Evaluate the power: \(4\) Calculate or simplify the expression \( (16/2)^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{16}{2}\right)^{2}\) - step1: Divide the terms: \(8^{2}\) - step2: Evaluate the power: \(64\) Calculate or simplify the expression \( (24/3)^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{24}{3}\right)^{2}\) - step1: Divide the terms: \(8^{2}\) - step2: Evaluate the power: \(64\) Calculate or simplify the expression \( (24/6)^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{24}{6}\right)^{2}\) - step1: Divide the terms: \(4^{2}\) - step2: Evaluate the power: \(16\) Calculate or simplify the expression \( (16/4)^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{16}{4}\right)^{2}\) - step1: Divide the terms: \(4^{2}\) - step2: Evaluate the power: \(16\) Here are the calculated sample sizes for each part of the problem: ### Problem 22 Given \( \sigma = 16 \): #### a. For \( SE = 8 \): \[ n = \left(\frac{16}{8}\right)^2 = 4 \] #### b. For \( SE = 4 \): \[ n = \left(\frac{16}{4}\right)^2 = 16 \] #### c. For \( SE = 2 \): \[ n = \left(\frac{16}{2}\right)^2 = 64 \] ### Problem 23 Given \( \sigma = 24 \): #### a. For \( SE = 6 \): \[ n = \left(\frac{24}{6}\right)^2 = 16 \] #### b. For \( SE = 3 \): \[ n = \left(\frac{24}{3}\right)^2 = 64 \] ### Summary of Results - For Problem 22: - a. \( n = 4 \) - b. \( n = 16 \) - c. \( n = 64 \) - For Problem 23: - a. \( n = 16 \) - b. \( n = 64 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the sample size needed for various standard errors, you can use the formula: \( n = \left(\frac{\sigma}{SE}\right)^2 \), where \( \sigma \) is the population standard deviation and \( SE \) is the desired standard error. For your scenarios, using \( \sigma = 16 \): - For \( SE = 8 \), \( n = \left(\frac{16}{8}\right)^2 = 4 \) - For \( SE = 4 \), \( n = \left(\frac{16}{4}\right)^2 = 16 \) - For \( SE = 2 \), \( n = \left(\frac{16}{2}\right)^2 = 64 \) For the second part with \( \sigma = 24 \): - For \( SE = 6 \), \( n = \left(\frac{24}{6}\right)^2 = 16 \) - For \( SE = 3 \), \( n = \left(\frac{24}{3}\right)^2 = 64 \) Always remember, the larger the standard error you want, the smaller your sample size needs to be, and vice versa. One common mistake people make is forgetting to square the numerator when applying the formula. This can lead to significantly underestimated sample sizes. Another tip is to double-check whether the population standard deviation is reflective of your actual population, as relying on inaccurate figures can skew your results dramatically. Just think of it as laying the right foundation before building your analysis!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad