Pregunta
upstudy study bank question image url

A person has 20 coins, all nickels and dimes, worth one dollar and 40 cents. How many nickels are there? If \( n= \) number of nickels and \( d= \) number of dimes, which system of equations represents the problem? \( n+d=20 \) and \( n+d=140 \) \( n+d=20 \) and \( 5 n+10 d=140 \) \( 5 n+10 d=140 \)

Ask by Phillips Weber. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are 12 nickels. To find the number of nickels, set up the system of equations: 1. \( n + d = 20 \) (total coins) 2. \( 5n + 10d = 140 \) (total value in cents) Solving the system: - From the first equation, \( d = 20 - n \) - Substitute into the second equation: \( 5n + 10(20 - n) = 140 \) - Simplify: \( 5n + 200 - 10n = 140 \) - Combine like terms: \( -5n + 200 = 140 \) - Solve for \( n \): \( n = 12 \) So, there are 12 nickels.

Solución

Let n be the number of nickels and d be the number of dimes. We are told: 1. There are a total of 20 coins:   n + d = 20 2. The total value is $1.40, which is 140 cents. Since each nickel is worth 5 cents and each dime is worth 10 cents, we have:   5n + 10d = 140 Thus, the correct system of equations is:   n + d = 20   5n + 10d = 140 To solve for n (the number of nickels), express d from the first equation:   d = 20 - n Substitute d into the second equation:   5n + 10(20 - n) = 140   5n + 200 - 10n = 140   -5n + 200 = 140   -5n = 140 - 200   -5n = -60   n = -60 / (-5)   n = 12 Therefore, there are 12 nickels.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To represent the problem with the correct system of equations, you first need to understand that the total number of coins (nickels \( n \) and dimes \( d \)) must equal 20, which gives you the equation \( n + d = 20 \). The total value of the coins, where each nickel is worth 5 cents and each dime 10 cents, must equal $1.40 or 140 cents. This leads to the equation \( 5n + 10d = 140 \). So, the correct system is \( n + d = 20 \) and \( 5n + 10d = 140 \). For a twist on the classic coin problem, historically, these types of problems date back to ancient civilizations that used various coins for trade. Roman merchants, for example, often faced similar calculations, relying heavily on effective trade practices which can be thought of as the first forms of algebraic reasoning! In terms of real-world applications, understanding how to set up equations from word problems isn't just useful for exams; these skills come in handy when budgeting, planning expenses, or even when juggling responsibilities in daily life! Finding the right balance, whether it’s money or time, can feel like a mathematical problem waiting to be solved!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad