Pregunta
upstudy study bank question image url

Laney uses \( 3 \frac{1}{4} \) bags of red beads and \( 2 \frac{5}{6} \) bags of yellow beads for a craft at summer camp. How many bags of red and yellow beads does Laney use? A \( 5 \frac{11}{12} \) bags B \( 6 \frac{1}{4} \) bags \( 5 \frac{3}{5} \) bags \( 6 \frac{1}{10} \) bags

Ask by Savage Vaughn. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Laney uses \( 6 \frac{1}{12} \) bags of red and yellow beads.

Solución

To find the total number of bags of red and yellow beads that Laney uses, we need to add the two mixed numbers together: \( 3 \frac{1}{4} \) and \( 2 \frac{5}{6} \). ### Step 1: Convert mixed numbers to improper fractions 1. For \( 3 \frac{1}{4} \): \[ 3 \frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{12 + 1}{4} = \frac{13}{4} \] 2. For \( 2 \frac{5}{6} \): \[ 2 \frac{5}{6} = \frac{2 \times 6 + 5}{6} = \frac{12 + 5}{6} = \frac{17}{6} \] ### Step 2: Find a common denominator The denominators are 4 and 6. The least common multiple (LCM) of 4 and 6 is 12. ### Step 3: Convert the fractions to have the same denominator 1. Convert \( \frac{13}{4} \) to a denominator of 12: \[ \frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12} \] 2. Convert \( \frac{17}{6} \) to a denominator of 12: \[ \frac{17}{6} = \frac{17 \times 2}{6 \times 2} = \frac{34}{12} \] ### Step 4: Add the fractions Now we can add the two fractions: \[ \frac{39}{12} + \frac{34}{12} = \frac{39 + 34}{12} = \frac{73}{12} \] ### Step 5: Convert back to a mixed number To convert \( \frac{73}{12} \) back to a mixed number: - Divide 73 by 12, which gives 6 with a remainder of 1. - Thus, \( \frac{73}{12} = 6 \frac{1}{12} \). ### Conclusion Laney uses \( 6 \frac{1}{12} \) bags of beads. Now, let's check the options provided: - A \( 5 \frac{11}{12} \) bags - B \( 6 \frac{1}{4} \) bags - \( 5 \frac{3}{5} \) bags - \( 6 \frac{1}{10} \) bags None of the options match \( 6 \frac{1}{12} \). It seems there might be an error in the options provided. The correct answer is \( 6 \frac{1}{12} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the total number of bags of beads Laney uses, we need to add the two mixed numbers: \( 3 \frac{1}{4} \) (red beads) and \( 2 \frac{5}{6} \) (yellow beads). First, convert these mixed numbers into improper fractions: \( 3 \frac{1}{4} = \frac{13}{4} \) and \( 2 \frac{5}{6} = \frac{17}{6} \). Now, to add them, we need a common denominator, which is 12. Rewriting the fractions, we get \( \frac{39}{12} + \frac{34}{12} = \frac{73}{12} \). Converting back to a mixed number gives us \( 6 \frac{1}{12} \). Now, while none of the answer choices are correct due to potentially mistyping or transposing, the correct combined total simplifies neatly into a fun fraction! If you wish to use these ratios for fun crafts yourself, think about the color combinations and design patterns you can create! Beads can add a pop of joy to any project and spark creativity galore! Moreover, if you're weighing out your beads for precision in your projects, it’s handy to remember that 1 bag can translate to different weights. Always double-check your calculations, especially when crafting multiple items; it’s easy to miscount when you’re surrounded by a rainbow of craft supplies!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad