Pregunta
upstudy study bank question image url

1. You are setting up a system of programming codes for a universal TV remote. Each code will have five digits and cannot include a or repeat any digits. How many codes a) Do not contain a 7 ? b) Have 3 as the third digit and 5 as the fifth digit? c) Begin with an even number? d) Begin and end with an even number?

Ask by Coleman Kelly. in Canada
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) 15,120 codes do not contain a 7. b) 336 codes have 3 as the third digit and 5 as the fifth digit. c) 15,120 codes begin with an even number. d) 6,720 codes begin and end with an even number.

Solución

To solve the problem, we will analyze each part step by step, considering the constraints provided. ### Known Conditions: - Each code consists of 5 digits. - Digits cannot include 'a' (which I assume means the digit '0' since 'a' is not a digit). - Digits cannot repeat. ### a) Codes that do not contain a 7 The available digits are 0, 1, 2, 3, 4, 5, 6, 8, 9 (9 digits total, excluding 7). 1. **First digit**: Can be any of the 9 digits (0-6, 8, 9). 2. **Second digit**: Can be any of the remaining 8 digits. 3. **Third digit**: Can be any of the remaining 7 digits. 4. **Fourth digit**: Can be any of the remaining 6 digits. 5. **Fifth digit**: Can be any of the remaining 5 digits. The total number of codes is calculated as: \[ 9 \times 8 \times 7 \times 6 \times 5 \] ### b) Codes with 3 as the third digit and 5 as the fifth digit 1. **Third digit**: Fixed as 3. 2. **Fifth digit**: Fixed as 5. 3. **First digit**: Can be any of the remaining 8 digits (0, 1, 2, 4, 6, 7, 8, 9). 4. **Second digit**: Can be any of the remaining 7 digits. 5. **Fourth digit**: Can be any of the remaining 6 digits. The total number of codes is calculated as: \[ 8 \times 7 \times 6 \] ### c) Codes that begin with an even number The available even digits are 0, 2, 4, 6, 8 (5 options). 1. **First digit**: Can be any of the 5 even digits. 2. **Second digit**: Can be any of the remaining 9 digits. 3. **Third digit**: Can be any of the remaining 8 digits. 4. **Fourth digit**: Can be any of the remaining 7 digits. 5. **Fifth digit**: Can be any of the remaining 6 digits. The total number of codes is calculated as: \[ 5 \times 9 \times 8 \times 7 \times 6 \] ### d) Codes that begin and end with an even number 1. **First digit**: Can be any of the 5 even digits. 2. **Fifth digit**: Can be any of the remaining 4 even digits (since it cannot repeat the first digit). 3. **Second digit**: Can be any of the remaining 8 digits. 4. **Third digit**: Can be any of the remaining 7 digits. 5. **Fourth digit**: Can be any of the remaining 6 digits. The total number of codes is calculated as: \[ 5 \times 4 \times 8 \times 7 \times 6 \] Now, let's calculate the total number of codes for each part. ### Calculations I will perform the calculations for each part now. Calculate the value by following steps: - step0: Calculate: \(8\times 7\times 6\) - step1: Multiply the terms: \(56\times 6\) - step2: Multiply the numbers: \(336\) Calculate or simplify the expression \( 5*9*8*7*6 \). Calculate the value by following steps: - step0: Calculate: \(5\times 9\times 8\times 7\times 6\) - step1: Multiply the terms: \(45\times 8\times 7\times 6\) - step2: Multiply the terms: \(360\times 7\times 6\) - step3: Multiply the terms: \(2520\times 6\) - step4: Multiply the numbers: \(15120\) Calculate or simplify the expression \( 5*4*8*7*6 \). Calculate the value by following steps: - step0: Calculate: \(5\times 4\times 8\times 7\times 6\) - step1: Multiply the terms: \(20\times 8\times 7\times 6\) - step2: Multiply the terms: \(160\times 7\times 6\) - step3: Multiply the terms: \(1120\times 6\) - step4: Multiply the numbers: \(6720\) Calculate or simplify the expression \( 9*8*7*6*5 \). Calculate the value by following steps: - step0: Calculate: \(9\times 8\times 7\times 6\times 5\) - step1: Multiply the terms: \(72\times 7\times 6\times 5\) - step2: Multiply the terms: \(504\times 6\times 5\) - step3: Multiply the terms: \(3024\times 5\) - step4: Multiply the numbers: \(15120\) Here are the results for each part of the problem: ### a) Codes that do not contain a 7 The total number of codes is \( 15120 \). ### b) Codes with 3 as the third digit and 5 as the fifth digit The total number of codes is \( 336 \). ### c) Codes that begin with an even number The total number of codes is \( 15120 \). ### d) Codes that begin and end with an even number The total number of codes is \( 6720 \). These calculations provide the number of valid codes for each specified condition.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, let's break down each part of the question step by step. The available digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 (total of 10 digits). **a)** To find the number of codes that do not contain a 7, we can use the remaining digits: 0, 1, 2, 3, 4, 5, 6, 8, and 9 (total of 9 digits). The first digit can be any of the 9 digits, the second can be any of the remaining 8 digits, and so on. Thus we have: - 1st digit: 9 options - 2nd digit: 8 options - 3rd digit: 7 options - 4th digit: 6 options - 5th digit: 5 options So the total number of codes without a 7 is: 9 * 8 * 7 * 6 * 5 = 15120 codes. **b)** For codes with 3 as the third digit and 5 as the fifth digit, we fix those two digits first. That leaves us with 3 positions to fill (1st, 2nd, 4th) and 8 digits to choose from (since 3 and 5 are already used). Starting with the first digit, which cannot be 0: - 1st digit: 4 options (2, 4, 6, 8) - 2nd digit: 7 options (8 total options minus the already selected 3, 5, and the digit used for the first position) - 4th digit: 6 options (after selecting the first two digits and applying the non-repeating condition) Thus, the total codes with these restrictions is: 4 * 7 * 6 = 168 codes. **c)** To find the number of codes starting with an even number, the first digit can only be 0, 2, 4, 6, or 8 (5 options). The next digits will then be chosen from the remaining 9 digits with no repetitions: - 1st digit: 5 options (0, 2, 4, 6, 8) - 2nd digit: 8 options - 3rd digit: 7 options - 4th digit: 6 options - 5th digit: 5 options The total number of codes beginning with an even number is: 5 * 8 * 7 * 6 * 5 = 8400 codes. **d)** For codes that start and end with an even number, we again have 5 options for the first digit and also 5 options for the last digit (0, 2, 4, 6, or 8). These selections obviously cannot overlap: - 1st digit: 5 options - 5th digit: 4 remaining options (after choosing the first) - 2nd digit: 8 remaining options - 3rd digit: 7 remaining options - 4th digit: 6 remaining options So, the total number of codes starting and ending with an even number is: 5 * 4 * 8 * 7 * 6 = 6720 codes.

preguntas relacionadas

For each of the following recurrence relations, pick the correct asymptotic runtime: (a) [5 points] Select the correct asymptotic complexity of an algorithm with runtim \( T(n, n) \) where \[ \begin{aligned} T(x, c) & =\Theta(x) & & \text { for } c \leq 2 \\ T(c, y) & =\Theta(y) & & \text { for } c \leq 2, \text { and } \\ T(x, y) & =\Theta(x+y)+T(x / 2, y / 2) & & \end{aligned} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \). 6. \( \Theta\left(2^{n}\right) \). (b) [5 points] Select the correct asymptotic complexity of an algorithm with runtim \( T(n, n) \) where \[ \begin{array}{ll} T(x, c)=\Theta(x) & \text { for } c \leq 2 \\ T(c, y)=\Theta(y) & \text { for } c \leq 2, \text { and } \\ T(x, y)=\Theta(x)+T(x, y / 2) & \end{array} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \). 6. \( \Theta\left(2^{n}\right) \). (c) [5 points] Select the correct asymptotic complexity of an algorithm with runtin \( T(n, n) \) where \[ \begin{array}{rlrl} T(x, c) & =\Theta(x) & \text { for } c \leq 2 \\ T(x, y) & =\Theta(x)+S(x, y / 2), & & \\ S(c, y) & =\Theta(y) & \text { for } c \leq 2, \text { and } \\ S(x, y) & =\Theta(y)+T(x / 2, y) & \end{array} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \).

Latest Computer Technology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad