Pregunta
upstudy study bank question image url

Part 1 of 4 Forthe given functions, find \( (f \circ g)(x) \) and \( (g \circ f)(x) \) and the domain of each. \( f(x)=x^{3}-7 x^{2}+3 x+7, g(x)=x+1 \) \( (f \circ g)(x)=\square \)

Ask by Fuentes Gray. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( (f \circ g)(x) = x^{3} - 4x^{2} - 8x + 4 \) and \( (g \circ f)(x) = x^{3} - 7x^{2} + 3x + 8 \). Both functions are defined for all real numbers.

Solución

Simplify the expression by following steps: - step0: Simplify: \(\left(x^{3}-7x^{2}+3x+7\right)+1\) - step1: Remove the parentheses: \(x^{3}-7x^{2}+3x+7+1\) - step2: Add the numbers: \(x^{3}-7x^{2}+3x+8\) Expand the expression \( (x+1)^{3} - 7(x+1)^{2} + 3(x+1) + 7 \) Simplify the expression by following steps: - step0: Calculate: \(\left(x+1\right)^{3}-7\left(x+1\right)^{2}+3\left(x+1\right)+7\) - step1: Expand the expression: \(x^{3}+3x^{2}+3x+1-7\left(x+1\right)^{2}+3\left(x+1\right)+7\) - step2: Expand the expression: \(x^{3}+3x^{2}+3x+1-7x^{2}-14x-7+3\left(x+1\right)+7\) - step3: Expand the expression: \(x^{3}+3x^{2}+3x+1-7x^{2}-14x-7+3x+3+7\) - step4: Subtract the terms: \(x^{3}-4x^{2}-8x+4\) Let's find \( (f \circ g)(x) \) and \( (g \circ f)(x) \) step by step. ### Step 1: Calculate \( (f \circ g)(x) \) We have: - \( f(x) = x^{3} - 7x^{2} + 3x + 7 \) - \( g(x) = x + 1 \) To find \( (f \circ g)(x) \), we substitute \( g(x) \) into \( f(x) \): \[ (f \circ g)(x) = f(g(x)) = f(x + 1) \] Calculating \( f(x + 1) \): \[ f(x + 1) = (x + 1)^{3} - 7(x + 1)^{2} + 3(x + 1) + 7 \] After expanding, we find: \[ (f \circ g)(x) = x^{3} - 4x^{2} - 8x + 4 \] ### Step 2: Calculate \( (g \circ f)(x) \) Now, we find \( (g \circ f)(x) \): \[ (g \circ f)(x) = g(f(x)) = g(x^{3} - 7x^{2} + 3x + 7) \] Calculating \( g(f(x)) \): \[ g(f(x)) = (x^{3} - 7x^{2} + 3x + 7) + 1 \] After simplifying, we find: \[ (g \circ f)(x) = x^{3} - 7x^{2} + 3x + 8 \] ### Step 3: Determine the Domains - The domain of \( g(x) = x + 1 \) is all real numbers, \( \mathbb{R} \). - The function \( f(x) \) is a polynomial, which is also defined for all real numbers, \( \mathbb{R} \). Thus, both compositions \( (f \circ g)(x) \) and \( (g \circ f)(x) \) are defined for all real numbers. ### Final Results - \( (f \circ g)(x) = x^{3} - 4x^{2} - 8x + 4 \) - \( (g \circ f)(x) = x^{3} - 7x^{2} + 3x + 8 \) - Domain of \( (f \circ g)(x) \): \( \mathbb{R} \) - Domain of \( (g \circ f)(x) \): \( \mathbb{R} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( (f \circ g)(x) \), we begin by substituting \( g(x) = x + 1 \) into \( f(x) \): \[ (f \circ g)(x) = f(g(x)) = f(x + 1) \] Now, substitute \( x + 1 \) into \( f(x) \): \[ f(x + 1) = (x + 1)^3 - 7(x + 1)^2 + 3(x + 1) + 7 \] Calculating each term: 1. \( (x + 1)^3 = x^3 + 3x^2 + 3x + 1 \) 2. \( -7(x + 1)^2 = -7(x^2 + 2x + 1) = -7x^2 - 14x - 7 \) 3. \( 3(x + 1) = 3x + 3 \) 4. Finally, there’s a constant \( + 7 \). Combining these gives: \[ f(x + 1) = (x^3 + 3x^2 + 3x + 1) + (-7x^2 - 14x - 7) + 3x + 3 + 7 \] Now simplifying: \[ = x^3 + (3 - 7)x^2 + (3 - 14 + 3)x + (1 - 7 + 3 + 7) \] \[ = x^3 - 4x^2 - 8x + 4 \] Thus, we have: \[ (f \circ g)(x) = x^3 - 4x^2 - 8x + 4 \] Now, for \( (g \circ f)(x) \): \[ (g \circ f)(x) = g(f(x)) = g(x^3 - 7x^2 + 3x + 7) = (x^3 - 7x^2 + 3x + 7) + 1 \] Simplifying gives: \[ (g \circ f)(x) = x^3 - 7x^2 + 3x + 8 \] Next, let’s identify the domains: The function \( g(x) = x + 1 \) is defined for all real numbers \( x \), so its domain is \( \mathbb{R} \). The function \( f(x) = x^3 - 7x^2 + 3x + 7 \) is also defined for all real numbers, making its domain \( \mathbb{R} \) as well. Therefore, both compositions \( (f \circ g)(x) \) and \( (g \circ f)(x) \) inherit this domain: \[ \text{Domain of } (f \circ g)(x) = \mathbb{R} \quad \text{Domain of } (g \circ f)(x) = \mathbb{R} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad