Elena wants to build a one-sample \( z \) interval to estimate what proportion of computers produced at a factory have a certain defect. She chooses a confidence level of \( 94 \% \). A random sample of 200 computers shows that 12 computers have the defect. What critical value \( z^{*} \) should Elena use to construct this confidence interval? Choose 1 answer: (A) \( z^{*}=1.55 \) (B) \( z^{*}=1.75 \) (C) \( z^{*}=1.88 \) (D) \( z^{*}=1.96 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the critical value \( z^{*} \) for a \( 94 \% \) confidence level, we’ll look for the value that leaves \( 3 \% \) in each tail of the standard normal distribution (since \( 100\% - 94\% = 6\% \), and half of that is \( 3\% \)). Using a standard \( z \)-table or a calculator, we find that \( z^{*} \approx 1.88 \) corresponds to a tail probability of \( 3\% \). Thus, the answer is: (C) \( z^{*}=1.88 \)
