Pregunta
upstudy study bank question image url

80) The enengy \( E \) possessed by a moving ob- ject onss \( m \) and velocity \( V \) varies as its mass and square of its velocity, (a) Write down the equation connecting \( E \), \( m \) and \( V \). (b) What would be the percentage change in energy when \( V \) is increased by \( 20 \% \) and \( m \) is decreased by \( 15 \% \) ? (WAEC)

Ask by Curry May. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The energy \( E \) is given by \( E = \frac{1}{2} mV^2 \). (b) When the velocity \( V \) increases by 20% and the mass \( m \) decreases by 15%, the energy increases by approximately 22.4%.

Solución

(a) Since the energy E varies directly as the mass m and the square of the velocity V, we can write the equation as   E ∝ mV² Introducing a constant of proportionality, we have   E = k · mV² Often in kinetic energy problems this constant k is taken as ½, so the equation becomes   E = ½ mV² (b) To find the percentage change in energy when V is increased by 20% and m is decreased by 15%, follow these steps: 1. New mass m' = m − 15% of m = 0.85 m. 2. New velocity V' = V + 20% of V = 1.20 V. Substitute into the energy formula:   E' = ½ · (0.85 m) · (1.20 V)² Calculate (1.20 V)²:   (1.20)² · V² = 1.44 V² Thus:   E' = ½ · 0.85m · 1.44V²     = 0.85 × 1.44 × (½ mV²)     = 1.224 × (½ mV²)     = 1.224 E This shows that the new energy is 1.224 times the initial energy, meaning there is a 22.4% increase. So, the percentage change in energy is an increase of 22.4%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The energy \( E \) of a moving object is given by the equation \( E = \frac{1}{2} m V^2 \). This means that the energy is directly proportional to the mass \( m \) and the square of the velocity \( V \). So, as either of these values changes, the energy will be affected accordingly! Now, let’s calculate the percentage change in energy. If velocity \( V \) increases by 20%, then the new velocity becomes \( V' = 1.2V \). And for mass \( m \), a 15% decrease makes it \( m' = 0.85m \). Plugging these into the energy equation gives us \( E' = \frac{1}{2} (0.85m)(1.2V)^2 \). This results in a new energy of: \[ E' = \frac{1}{2} (0.85m)(1.44V^2) = \frac{0.85 \times 1.44}{2} m V^2 \approx 0.612m V^2 \] Now for the percentage change, we find the difference between the new energy and the old energy, which is: \[ \text{Percentage change} = \left( \frac{E' - E}{E} \right) \times 100 = \left( \frac{0.612m V^2 - 0.5m V^2}{0.5m V^2} \right) \times 100 = \left( 0.224 \right) \times 100 \approx 22.4\% \] So, there is approximately a 22.4% increase in energy!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad