Pregunta
upstudy study bank question image url

\( \begin{array}{l}7 x-3 y=4 \\ 2 x-4 y=1\end{array} \) Which of the following system of equations is not equal to the system of equations shown above? \( \begin{array}{l}14 x-6 y=4 \text { and }-14 x+28 y=1 \\ 28 x-12 y=16 \text { and }-6 x+12 y=-3 \\ -28 x+12 y=-16 \text { and } 28 x-56 y=14\end{array} \)

Ask by Mathis Wright. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system \(14x - 6y = 4\) and \(-14x + 28y = 1\) is not equivalent to the original system.

Solución

To determine which of the given systems of equations is not equivalent to the original system, we can analyze each option by checking if they can be derived from the original equations through multiplication or addition. The original system of equations is: 1. \( 7x - 3y = 4 \) 2. \( 2x - 4y = 1 \) Let's analyze each option: ### Option 1: 1. \( 14x - 6y = 4 \) 2. \( -14x + 28y = 1 \) - The first equation can be obtained by multiplying the first equation of the original system by 2: \[ 2(7x - 3y) = 2(4) \implies 14x - 6y = 8 \quad \text{(not equal)} \] - The second equation can be obtained by multiplying the second equation of the original system by -7: \[ -7(2x - 4y) = -7(1) \implies -14x + 28y = -7 \quad \text{(not equal)} \] Thus, this system is not equivalent to the original system. ### Option 2: 1. \( 28x - 12y = 16 \) 2. \( -6x + 12y = -3 \) - The first equation can be obtained by multiplying the first equation of the original system by 4: \[ 4(7x - 3y) = 4(4) \implies 28x - 12y = 16 \quad \text{(equal)} \] - The second equation can be obtained by multiplying the second equation of the original system by -3: \[ -3(2x - 4y) = -3(1) \implies -6x + 12y = -3 \quad \text{(equal)} \] Thus, this system is equivalent to the original system. ### Option 3: 1. \( -28x + 12y = -16 \) 2. \( 28x - 56y = 14 \) - The first equation can be obtained by multiplying the first equation of the original system by -4: \[ -4(7x - 3y) = -4(4) \implies -28x + 12y = -16 \quad \text{(equal)} \] - The second equation can be obtained by multiplying the second equation of the original system by 14: \[ 14(2x - 4y) = 14(1) \implies 28x - 56y = 14 \quad \text{(equal)} \] Thus, this system is equivalent to the original system. ### Conclusion: The system of equations that is not equal to the original system is: \[ \begin{array}{l} 14x - 6y = 4 \\ -14x + 28y = 1 \end{array} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine which system of equations is not equivalent to the given system \( \begin{array}{l} 7x - 3y = 4 \\ 2x - 4y = 1 \end{array} \), we need to look for a transformation that might introduce inconsistencies. The first system \( 14x - 6y = 4 \) and \( -14x + 28y = 1 \) can be modified by multiplying the first equation by 2; however, the second equation does not arise from any simple manipulation of the first system, indicating a disparity. On the other hand, the second system \( 28x - 12y = 16 \) and \( -6x + 12y = -3 \) can be deduced from consistent scalar multipliers. Similarly, the last system \( -28x + 12y = -16 \) and \( 28x - 56y = 14 \) also aligns correctly based on manipulation rules. Thus, the first system is the one that does not maintain equivalency with the original given equations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad