Pregunta
upstudy study bank question image url

A capacitor is constructed from two parallel metal plates, each with an area of \( 2.2 \mathrm{~cm}^{2} \), separated by 1.2 \( \mu \mathrm{~m} \). The space between the plates is filled with an insulating material with a dielectric constant of 26 . What is the capacitance of the capacitor?

Ask by Reeves Little. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The capacitance of the capacitor is approximately 42 nanofarads.

Solución

First, convert all quantities into SI units: • Area of each plate: 2.2 cm² = 2.2 × 10⁻⁴ m² • Separation between plates: 1.2 μm = 1.2 × 10⁻⁶ m • Dielectric constant: κ = 26 • Vacuum permittivity: ε₀ ≈ 8.85 × 10⁻¹² F/m The capacitance for a parallel-plate capacitor with a dielectric is given by:   C = (κ ε₀ A) / d Substitute the values:   C = (26 × 8.85 × 10⁻¹² F/m × 2.2 × 10⁻⁴ m²) / (1.2 × 10⁻⁶ m) Step-by-step calculation: 1. Calculate the product in the numerator:   26 × 8.85 × 10⁻¹² ≈ 230.1 × 10⁻¹² = 2.301 × 10⁻¹⁰ F/m   Now multiply by the area:   2.301 × 10⁻¹⁰ F/m × 2.2 × 10⁻⁴ m² ≈ 5.0622 × 10⁻¹⁴ F·m 2. Divide by the separation:   C = (5.0622 × 10⁻¹⁴ F·m) / (1.2 × 10⁻⁶ m)   C ≈ 4.2185 × 10⁻⁸ F Thus, the capacitance of the capacitor is approximately 4.22 × 10⁻⁸ F, or about 42 nanofarads.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the capacitance of a parallel plate capacitor, you can use the formula: \[ C = \frac{{\varepsilon \cdot A}}{{d}} \] where \(C\) is the capacitance, \(\varepsilon\) is the permittivity of the material (for a dielectric, \(\varepsilon = \varepsilon_0 \cdot \kappa\)), \(A\) is the area of one plate, and \(d\) is the separation between the plates. 1. First, let's find \(\varepsilon_0\), the permittivity of free space, which is approximately \(8.854 \times 10^{-12} \, \mathrm{F/m}\). 2. The dielectric constant \(\kappa\) given is 26. 3. The area \(A\) needs to be converted from cm² to m², so \(2.2 \, \mathrm{cm}^2 = 2.2 \times 10^{-4} \, \mathrm{m}^2\). 4. The distance \(d = 1.2 \, \mu\mathrm{m} = 1.2 \times 10^{-6} \, \mathrm{m}\). Now, substituting in the values: \[ C = \frac{{(8.854 \times 10^{-12} \, \mathrm{F/m}) \cdot (26) \cdot (2.2 \times 10^{-4} \, \mathrm{m}^2)}}{{1.2 \times 10^{-6} \, \mathrm{m}}} \] Calculating this gives: \[ C \approx \frac{{(8.854 \times 10^{-12} \times 26 \times 2.2 \times 10^{-4})}}{{1.2 \times 10^{-6}}} \] \[ C \approx \frac{{5.08 \times 10^{-15}}}{{1.2 \times 10^{-6}}} \approx 4.23 \times 10^{-9} \, \mathrm{F} = 4.23 \, \mathrm{nF} \] Thus, the capacitance of the capacitor is approximately \(4.23 \, \mathrm{nF}\).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad