Pregunta
upstudy study bank question image url

22. Find the amount of paper needed for the label on the can. Use 3.14 for \( \pi \) and round to the nearest tenth. A \( 21.2 \mathrm{in}^{2} \) B \( 25.5 \mathrm{in}^{2} \) C \( 29.1 \mathrm{in}^{2} \) D \( 42.4 \mathrm{in}^{2} \) 23. A cylinder has a surface area of 5652 square millimeters. If the diameter of the cylinder is 30 millimeters, what is the height? Use 3.14 for \( \pi \). F 10 mm G 45 mm H 59 mm J 105 mm

Ask by Chadwick Mathis. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For Problem 22, there's not enough information to find the amount of paper needed for the label. For Problem 23, the height of the cylinder is 45 mm, which is option G.

Solución

To solve these problems, we will use the formulas for the surface area of a cylinder and the necessary calculations step by step. ### Problem 22: Find the amount of paper needed for the label on the can. The surface area \( A \) of a cylinder (which is the label area in this case) is given by the formula: \[ A = 2\pi r(h + r) \] Where: - \( r \) is the radius of the base of the cylinder. - \( h \) is the height of the cylinder. However, we need the dimensions of the cylinder to calculate the surface area. Since the problem does not provide these, we cannot solve it directly. ### Problem 23: Find the height of the cylinder. Given: - Surface area \( A = 5652 \, \text{mm}^2 \) - Diameter \( d = 30 \, \text{mm} \) First, we find the radius \( r \): \[ r = \frac{d}{2} = \frac{30}{2} = 15 \, \text{mm} \] Now, we can use the surface area formula for a cylinder: \[ A = 2\pi r(h + r) \] Substituting the known values: \[ 5652 = 2 \cdot 3.14 \cdot 15(h + 15) \] Now, we simplify and solve for \( h \): 1. Calculate \( 2 \cdot 3.14 \cdot 15 \): \[ 2 \cdot 3.14 \cdot 15 = 94.2 \] 2. Substitute back into the equation: \[ 5652 = 94.2(h + 15) \] 3. Divide both sides by 94.2: \[ h + 15 = \frac{5652}{94.2} \] 4. Calculate \( \frac{5652}{94.2} \): \[ h + 15 \approx 60 \] 5. Subtract 15 from both sides to find \( h \): \[ h \approx 60 - 15 = 45 \, \text{mm} \] Thus, the height of the cylinder is approximately \( 45 \, \text{mm} \). ### Final Answers: - For Problem 22, we cannot determine the answer without additional information. - For Problem 23, the height of the cylinder is \( 45 \, \text{mm} \), corresponding to option G. Let me know if you need further assistance!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the amount of paper needed for the label on the can, we first need to calculate the surface area of a cylinder using the formula: \( Surface \, Area = 2\pi r(h + r) \). For each option, if you know the dimensions, plug in the values to find which one matches the surface area calculation. Now for the height of the cylinder, we would also use the formula for surface area. With a diameter of 30 mm, the radius \( r = 15 \). Plugging values into the surface area formula and solving for height, you'll determine the height that corresponds to 5652 square millimeters to reveal the correct option. Happy calculating!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad