Pregunta
upstudy study bank question image url

Quostlon 3 1. The tómperature In Austria one morning was \( -5^{\circ} \mathrm{C} \) at 08:00 and increased C avery hour untll 12:00. What will the temperature bo at \( 11: 30 \) ?

Ask by Brooks Turnbull. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At 11:30 AM, the temperature will be \(-5 + 3.5x\) degrees Celsius, where \( x \) is the temperature increase per hour.

Solución

To solve the problem, we need to determine the temperature in Austria at 11:30 AM, given that it started at \(-5^{\circ} \mathrm{C}\) at 08:00 AM and increased every hour until 12:00 PM. ### Step 1: Determine the time interval From 08:00 to 12:00, there are 4 hours (08:00 to 09:00, 09:00 to 10:00, 10:00 to 11:00, and 11:00 to 12:00). ### Step 2: Calculate the temperature increase Let’s denote the temperature increase per hour as \( x \). The temperature at 12:00 PM will be: \[ T_{12:00} = -5 + 4x \] ### Step 3: Find the temperature at 11:30 AM At 11:30 AM, which is halfway between 11:00 AM and 12:00 PM, the temperature will be: \[ T_{11:30} = T_{11:00} + 0.5x \] To find \( T_{11:00} \), we can express it as: \[ T_{11:00} = -5 + 3x \] Thus, we can write: \[ T_{11:30} = (-5 + 3x) + 0.5x = -5 + 3.5x \] ### Step 4: Determine the temperature at 12:00 PM Since we don't have the exact value of \( x \) (the hourly increase), we can express the temperature at 11:30 AM in terms of \( x \): \[ T_{11:30} = -5 + 3.5x \] ### Conclusion To find the exact temperature at 11:30 AM, we need the value of \( x \). If we assume a specific increase per hour, we can substitute that value into the equation. However, without that information, we can only express the temperature at 11:30 AM as: \[ T_{11:30} = -5 + 3.5x \] If you have a specific value for the hourly increase, please provide it, and I can calculate the exact temperature.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s break it down! Starting at \( -5^{\circ} \mathrm{C} \) at 08:00 and warming up until 12:00, that gives us four hours of time to play with (from 08:00 to 12:00). If we imagine the temperature rising steadily, we can infer that the change could be a consistent growth – let’s suppose it increases \( x^{\circ} \mathrm{C} \) every hour. To figure out the exact increase, we can estimate the eventual temperature at 12:00, but for 11:30, we only need an hour and a half of increments. Assuming a 4-hour climb leads to a total rise, for simplicity, let's say it could double in that time. If you were to take \( -5^{\circ} \mathrm{C} \) up by any reasonable average and reckon about half the time for 11:30, you’d land at a pleasantly warm \( -2.5^{\circ} \mathrm{C} \) just before noon! Voilà, a frosty morning is just a little less frosty by 11:30!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad