Pregunta
upstudy study bank question image url

In order to solve the following system of equations by addition, which of the following could you do before adding the equations so that one variable will be eliminated when you add them? \( 2 x-4 y=5 \) \( 6 x-3 y=10 \) A. Multiply the top equation by -3 . B. Multiply the top equation by -3 and the bottom equation by 2 . C. Multiply the top equation by 3 and the bottom equation by 4 . D. Multiply the top equation by -2 .

Ask by Cook Parsons. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Option A: Multiply the top equation by –3.

Solución

We start with the system of equations:   (1) 2x – 4y = 5   (2) 6x – 3y = 10 Our goal is to manipulate one or both equations so that when we add them, one variable is eliminated. Looking at option A: Multiply the top equation by –3. Multiplying equation (1) by –3 gives:   –3(2x – 4y) = –3(5)   –6x + 12y = –15 Now we have:   Modified (1): –6x + 12y = –15   (2):   6x – 3y = 10 When we add these equations:   (–6x + 12y) + (6x – 3y) = (–15) + 10   (–6x + 6x) + (12y – 3y) = –5   0x + 9y = –5   9y = –5 The x terms cancel out, eliminating x. We can now solve for y. Thus, option A is a valid step to eliminate one variable when adding the equations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's consider option B – if you multiply the top equation \(2x - 4y = 5\) by -3 and the bottom equation \(6x - 3y = 10\) by 2, you'll get: - Top equation: \( -6x + 12y = -15 \) - Bottom equation: \( 12x - 6y = 20 \) Now when you add them together, \( -6x + 12y + 12x - 6y \) simplifies perfectly, letting you eliminate \(x\)! So, make sure to use the right coefficients for a smooth elimination process. If you consider the first equation multiplied by -3, while trying other options, be cautious of the coefficients. It's easy to accidentally create different terms that don't cancel out. Always keep track of how the changes affect both equations, ensuring one variable vanishes upon addition!

Latest Algebra Questions

phrase I. The difference between three times \( x \) and fifteen is greater than or equal to five 2. Five more than sixteen times \( x \) is less than or equal to six 3. Three more than two times \( x \) is less than seven \( \square \) 4. Five less than four times \( x \) is less than or equal to sixteen 5. Six times the sum of \( x \) and twelve is less than fourteen 6. The difference between fifteen and two times \( x \) is greater than five 7. The difference between eleven and four times \( x \) is greater than or equal to three 8. The sum of negative three times \( x \) and five is less than or equal to negative four 9. Fourteen less than five times \( x \) is at most eleven \( \qquad \) 10. Twice the sum of nine and \( x \) is greater than twenty II. Ten less than three times \( x \) is greater than eleven 12. Thirteen plus five times \( x \) is no more than thirty 13. Thirteen more than three times \( x \) is no more than the opposite of eleven 14. Half of the sum of \( x \) and six is no less than twenty 15. The difference between negative five times \( x \) and eight is greater than twelve. Solve only your inequalities! Look for your answer at the bottom. \[ \begin{array}{ll} N \quad 2 x+3 \leq 7 & E \\ C & 14-5 x \leq 11 \\ \text { C } 15-2 x>5 & \text { R } \\ F(9+x)>20 \\ E \quad 1 / 2 x+6 x \leq 30 & \text { D } \end{array} 6(x+12)<141 \] \[ \text { L } 5 x-14 \leq 11 \quad H \quad-3 x-5<-4 \] \[ \text { U } 3 x-15 \geq 5 \quad \text { A } 1 / 2(x+6) \geq 20 \] \[ E \quad 6(x-12)>14 \backslash \text { H } \quad 11-4 x \geq 3 \] \[ 3 x-10>11 \quad 0 \quad-5 x-8>12 \] \[ \vee 16 x+5<6 \quad \& \quad 3 x+13 \leq-11 \] \[ \text { Y } 4 x-5 \geq 16 \quad \text { \& } 16 x+5 \leq 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad