Pregunta
upstudy study bank question image url

The matrix associated with the solution to a system of linear equations in \( x, y \), and \( z \) is given. Write the solution to the system, if it exists. \( \left[\begin{array}{rrr|r}1 & 0 & -6 & 5 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0\end{array}\right] \) Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. \( x=\square, y=\square \), and \( z=\square \) (Simplify your answers.) B. There are infinitely many solutions. If \( z \) is allowed to be any real number, then \( x=\square \) and \( y=\square \). (Type expressions usinaz as the variable.)

Ask by Clarke Rojas. in the United States
Dec 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

B. There are infinitely many solutions. If \( z \) is allowed to be any real number, then \( x = 5 + 6z \) and \( y = 5 - 4z \).

Solución

To solve the system of linear equations represented by the augmented matrix \[ \left[\begin{array}{rrr|r} 1 & 0 & -6 & 5 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right], \] we can interpret this matrix as a system of equations: 1. \( x - 6z = 5 \) 2. \( y + 4z = 5 \) The third row, which consists entirely of zeros, indicates that there are no additional constraints on the variables, suggesting that the system has infinitely many solutions. To express the solutions in terms of \( z \), we can solve for \( x \) and \( y \): From the first equation: \[ x = 5 + 6z \] From the second equation: \[ y = 5 - 4z \] Thus, we can express the solution in terms of \( z \): - \( x = 5 + 6z \) - \( y = 5 - 4z \) - \( z = z \) (where \( z \) can be any real number) Therefore, the correct choice is: B. There are infinitely many solutions. If \( z \) is allowed to be any real number, then \[ x = 5 + 6z \quad \text{and} \quad y = 5 - 4z. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the given system of linear equations, we start by interpreting the augmented matrix: \[ \left[\begin{array}{rrr|r} 1 & 0 & -6 & 5 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right] \] This corresponds to the following equations: 1. \( x - 6z = 5 \) 2. \( y + 4z = 5 \) From these equations, we can express \( x \) and \( y \) in terms of \( z \): - From the first equation, \( x = 5 + 6z \). - From the second equation, \( y = 5 - 4z \). Since the third row of the matrix is composed entirely of zeros, it indicates that we have a free variable, which in this case is \( z \). Thus, we can conclude that there are infinitely many solutions. Allowing \( z \) to be any real number gives us: B. There are infinitely many solutions. If \( z \) is allowed to be any real number, then \( x=5 + 6z \) and \( y=5 - 4z \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad