The maturity value of a 4 -month loan of \( \$ 8,250 \) is \( \$ 8,363.50 \). What is the annual simple interest rate (in percent) on this loan? (Round your answer to one decimal place.) Need Help? Readit SUBMIT ANSWER
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the annual simple interest rate, we can use the formula for simple interest: \( I = P \times r \times t \), where \( I \) is the interest earned, \( P \) is the principal amount, \( r \) is the interest rate, and \( t \) is the time in years. First, calculate the interest earned: \( I = 8,363.50 - 8,250 = 113.50 \). Next, convert the loan duration to years: \( t = \frac{4}{12} = \frac{1}{3} \) year. Now plug in the values into the formula to solve for \( r \): \( 113.50 = 8,250 \times r \times \frac{1}{3} \). Rearranging gives: \( r = \frac{113.50 \times 3}{8,250} = \frac{340.50}{8,250} \approx 0.0412 \) or \( 4.12\% \). Now, rounding to one decimal place gives us an annual simple interest rate of \( 4.1\% \). And there you have it! The annual simple interest rate for this loan is \( 4.1\% \). Happy calculating!
