Pregunta
upstudy study bank question image url

Question 10 Write the equation of the tangent line to the graph of \( y=(2 x+1)^{4} \) at \( x=0 \). The equation must be in slope-intercept form: \( y=m x+b \). Question 11

Ask by Matthews Grant. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line is \( y = 8x + 1 \).

Solución

To find the equation of the tangent line to the graph of \( y = (2x + 1)^4 \) at \( x = 0 \), we need to follow these steps: 1. **Find the value of \( y \) at \( x = 0 \)**. 2. **Calculate the derivative \( y' \) to find the slope of the tangent line at \( x = 0 \)**. 3. **Use the point-slope form of the line to write the equation in slope-intercept form**. ### Step 1: Find \( y \) at \( x = 0 \) Substituting \( x = 0 \) into the equation: \[ y = (2(0) + 1)^4 = (1)^4 = 1 \] So, the point on the graph at \( x = 0 \) is \( (0, 1) \). ### Step 2: Calculate the derivative \( y' \) To find the slope of the tangent line, we need to differentiate \( y = (2x + 1)^4 \). We will use the chain rule for differentiation. Let \( u = 2x + 1 \), then \( y = u^4 \). The derivative \( y' \) is given by: \[ y' = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot 2 = 8u^3 \] Now substituting back \( u = 2x + 1 \): \[ y' = 8(2x + 1)^3 \] Now, we will evaluate \( y' \) at \( x = 0 \): \[ y' = 8(2(0) + 1)^3 = 8(1)^3 = 8 \] So, the slope \( m \) of the tangent line at \( x = 0 \) is \( 8 \). ### Step 3: Write the equation of the tangent line Using the point-slope form of the line, which is \( y - y_1 = m(x - x_1) \), we can substitute \( m = 8 \), \( x_1 = 0 \), and \( y_1 = 1 \): \[ y - 1 = 8(x - 0) \] This simplifies to: \[ y - 1 = 8x \] Adding \( 1 \) to both sides gives us: \[ y = 8x + 1 \] ### Final Answer The equation of the tangent line in slope-intercept form is: \[ y = 8x + 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of the tangent line at \( x=0 \), we first need to calculate the derivative of \( y=(2x+1)^4 \). Using the chain rule, the derivative \( y' = 4(2x+1)^3 \cdot 2 = 8(2x+1)^3 \). Evaluating the derivative at \( x=0 \) gives us \( y'(0) = 8(1)^3 = 8 \). The point on the curve at \( x=0 \) is \( y=1 \). Hence, the slope \( m=8 \) and the point \( (0,1) \) leads us to the equation \( y = 8x + 1 \). Additionally, did you know that tangent lines give you a sneak peek into how functions behave? By simply evaluating the slope at a point, you can approximate the function's value nearby! This principle underlies many concepts in calculus, allowing us to analyze changing rates and making predictions about complex behaviors, like how a roller coaster might ride over hilly terrain. Tangent lines and derivatives not only play significant roles in geometry and physics but also find application in economics! For instance, they're used to determine marginal cost and revenue, helping businesses make crucial decisions about production levels. By knowing the rate of change in profits at a given level of output, they can optimize their operations for maximum efficiency!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad