Expand the function. \[ f(x)=(7 x-2)^{3} \] \( \left.[?] x^{3}+\square x^{2}+\square x+\square\right] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To expand the function \( f(x) = (7x - 2)^3 \), we can use the binomial expansion formula: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, let \( a = 7x \), \( b = -2 \), and \( n = 3 \). Now calculate the expansion: \[ f(x) = (7x)^3 + 3(7x)^2(-2) + 3(7x)(-2)^2 + (-2)^3 \] Calculating each term: 1. \( (7x)^3 = 343x^3 \) 2. \( 3(7x)^2(-2) = 3 \cdot 49x^2 \cdot (-2) = -294x^2 \) 3. \( 3(7x)(-2)^2 = 3 \cdot 7x \cdot 4 = 84x \) 4. \( (-2)^3 = -8 \) Putting it all together: \[ f(x) = 343x^3 - 294x^2 + 84x - 8 \] Thus, the expanded form is: \[ f(x) = 343x^3 - 294x^2 + 84x - 8 \] So filling the boxes, we have: \[ x^{3}+\square x^{2}+\square x+\square \Rightarrow 343, -294, 84, -8 \]
