Pregunta
upstudy study bank question image url

Solve equation by vsing the quadratic Formbla \[ 3 x^{2}+2 x=5 \]

Ask by Graham Pena. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x=-\frac{5}{3} \) and \( x=1 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To solve the equation \( 3x^{2} + 2x - 5 = 0 \) using the quadratic formula, we first identify \( a = 3 \), \( b = 2 \), and \( c = -5 \). The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Plugging in the values, we first calculate the discriminant: \[ b^{2} - 4ac = 2^{2} - 4(3)(-5) = 4 + 60 = 64 \] Now, substituting back into the formula: \[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 3} = \frac{-2 \pm 8}{6} \] This gives us two solutions: 1. \( x = \frac{6}{6} = 1 \) 2. \( x = \frac{-10}{6} = -\frac{5}{3} \) So the solutions to the equation are \( x = 1 \) and \( x = -\frac{5}{3} \). You can check your answers by substituting these values back into the original equation to confirm they satisfy it! But keep in mind that quadratic equations aren't just academic exercises; they pop up in the real world more often than you'd think! For instance, projectile motion problems often rely on quadratic equations to predict the height of a thrown ball over time. You could also run into them in business when calculating profit maximization. Fun, right? Also, make sure to avoid common mistakes when using the quadratic formula! It’s easy to miscalculate the discriminant or forget to apply the plus/minus sign when finding both solutions. Always double-check your work, and keep your calculations organized!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad